- o oomsse= e e
Ewprmp = = mmeC yE—=—TRE i i T A e iy e semaamm e S, s T mdes
i R e R SR SRR S R G R e e

1
|
|
i
t

! ‘@4

|

uii" :

withtt bt hhrm“’ i‘miﬁ&m

st RS A G

AFWAL-TR-80-3023

ADVANCED FIBER REINFORCED
THERMOPLASTIC STRUCTURES

April 1980

Technical Report AFWAL-TR-80-3023
Final Report for Period August 1975 - August 1979

Avpproved For Public Release, Distribution Unlimited

i,

ﬁlﬁlilliNl‘i.‘l5diiﬂll‘iﬁl1L'¥J¥\ﬁmLﬁﬂl‘%{hwﬁwiﬁu!WWW‘MWWWHWiiJa!!ll‘li|§ﬂiHﬁiHWWWI*ﬁllﬂ’luﬂmWu«’d.dl|.muinmm‘mmnwnw.mrm.lmwmum-w\ o

Flight Dynamics Laboratory
Air Force Wright Aeronautical Laboratories LS

Air Foree Systems Command =
Wright-Patterson Air Force Base, Ohio 45424

} ... Boeing Aerospace Company SIGEITICANT WUNB

e’ 7 Military Airplane Development SEPRODNCE LEGIRRY. .-
- P.0. Box 3399
Seattle, Washington 98124

L 05 &
81 3 24 056

o LR R T O

-




RS T S e e POy S et e e . s T A
X g_rmsﬁ‘%%%a;%%gﬁiﬁ{}f%gv R ey R e R P S R R e T = =

s
=

E

=

H

E]

i

E

3

NOTICE

When Government drawings, specifications, or any other data used for any
purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data, is not to be regarded by
implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be
related thereto.
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and is releaseable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for publication.
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SECTION 1.0

1.1

INTRODUCTION

This program was performed to demonstrate the improved performance and cost
savings made available by the use of Advanced Fiber Reinforced Thermoplastics
(AFRTP) 1in aircraft structures. To demonstrate these improvements, full size
aircraft components were fabricated and tested. The YC-14 left-hand outboard
elevator was selected as the ccmponent to be used in this evaluation. This
part has a span of 19 ft and a maximum chord of 18 in. The studies showed
that a graphite/thermoplastic elevator offers a 27 percent weight savings and
20 percent cost savings over the presently used aluminum elevator by the
tenth elevator shipset. In this program we:

o Evaluated and refined manufacturing techniques for use with AFRTP'c,
Demonstrated the potential of AFRTP's to reduce the fabrication and

o S AR A Sl

assembly costs of aircraft structures.

o Demonstrated the structural integrity and durability of AFRTP
components.

o Developed repai. procedures and logistics for maintaining composite
structures.

0 Laid the groundwork for the production and flight service test of an
AFRTP component.

1.2 SUMMARY

To attain the objectives of this program the 13 tasks described below were
performed.

Task I--Resin and Fiber Selection/Evaluetion

P-1700 polysulfone was selected as the thermoplastic matrix material to be
used in this program. Graphite fibers in both tape and fabric form were
tested to obtain mechanical and environmental properties. HMolding components
incorporating short graphite fibers vere investigated for use as hinge fitting
material,




Task II--Conceptual Design/Concept Evaluation

Seven major aircraft and missile components were selectad for GRTP application
studies. Cost and weight savings were identified for each of the designs and
compared to equivalent graphite/epoxy and aluminum designs.

Task III--Preliminary Design

Three preliminary GRTP designs of the outboard YC-14 elevator were prepared.
One of the designs, a stiffener stabilized pane: concept, was selected for
further study and evaluation.

Task IV--Manufacturing Development

Manufacturing Development investigations were performed in the zreas of
laminate consolidation, post-forming methods, bonding and joining methods,
chopped fiber and fabric molding, assembly methods, and quality assurance
techniques.

Task V--Fiald Maintenance/Repair Methods

Maintenance and repair included inspection, routine cleaning and restoration,
major refurbistment and repair.

Task VI--Subcomponent Tooling

The tooling concepts established in Task IV, Manufacturing Development, were
used to fabricate the elements and subcomoonents in Task VII.

Task VII--Subcomponent Manufacture and Testiug

Elements and subcomponents representative of the selected design were
fabricated and tested.
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Task VIII-~Final Design

A final design of the selected concept (Task III) was prepared. The design
drawings were sufficiently detailed to supply all manufacturing information
required to fabricate the elevator component.

Task IX-~Demonstration Article Tooling

The major tools required to fabricate three elevators were designed and
fabricated.

Task X--Demonstration Article Fabrication

Three full-scale GRTP YC-14 elevators were fabricated. Processes governing
all aspects of manufacturing were developed.

Task XI--Demonstration Article Testing

Two elevators were tested. The first elevator was tested initially to
determine torsional and bending stiffnesses. It was then prooftested and then
cyclic loaded for four 1ifetimes. The part was then loaded to destruction to
determine residual strength. The second was tested to determine torsional and
flexural stiffness, and then it was loaded to failure.

Task XII--Cost and Payoff Analysis

A detailed cost analysis was made to determine the cost of the GRTP elevator

for a 300-aircraft producton run. This analysis was developed from cost
tracing data obtained during the course of the program. These costs were
compared to production costs of the existing aluminum design.




Task XIII--Craphite/PKXA Thermoplastic Structural Eiement Evaluation

i A comparison was made between the structural integrity of PKXA graphite

? reinforced thermoplastic (GRTP) and P-1700 GRTP. Critical YC-14 elements
) made of PKXA GRTP were fabricated and tested. The results from these tests
were compared to equivalent data obtained from polysulfone GRTP composites.
Fabrication cost comparisons determined that PKXA parts would be produced at
the same cests as polysulfone composite parts.
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2.C RESIN AND FIBER SELECTION/EVALUATION

Several samples of deve]opmenta1 thermoplastic prepregs (Table 1) were
obtained and evaluated for the purpose of obtaining a satisfactory commercial
prepreg for use on this program. The materials finally selected were
Hercules' 3004 (A-S/P-1700) unidirectional tape and Hexcel's 23 x 24 eight
Harness satin fabric/P-1700 prepreg. Laminates of these materials were
fabricated and tested. Figure 1 shows the effect of temperature on their
flexural strength and Figure 2 on flexural modulus. Figure 3 shaws the
effect of temperature on interlaminar shear, and Figures 4 and 5 show the
effect of temperature on their tensile strength and tensile modulus.
Additional property data for the fabric material is shown in Teble 2 and
for tape in Table 3,

The graphite fabric prepreg was selected as the primary reinforcing material
because it simplified lay-up, was easier to handle and was a more reproducible
and uniform prepreg.

Two molding compounds were selected for manufacturing studies. These
materials were Fiberite's RTP 1387 polyphenylene sulfide/graphite and RTP 907
polysulfone/glass molding compounds. The vendor designated properties of the
PPS material are shown in Table 4.
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Table 1.. Thermoplastic Prepregs

1) HERCULES 3004A-S 3" WIDE TAPE

2) DUPONT A-S/P-1700 POLYSULFONE 6" WIDE TAPE
3} HEXCEL/T300 181 GRAPHITE FABRIC/?-1700

4)  FIBERITE/T300 181 GRAPHITE FABRIC/P-1700

§)  U.S. POLYMERIC T-300/P-1700 POLYSULFONE 12" WIDE TAPE

¥
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@ 200 -
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Figure 1. Effect of Temperature on Flexure Strength — Graphite/polysulfone Composites
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FLEXURAL MODULUS, 106 psi
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Figure 2, Effect of Temperature on Flexure Modulus
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Figure 3. Effect of Temperature on Interlaminar Shear
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UNIDIRECTIONAL P-1700/A-S COMPOSITE
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Figure 4. Effect of Temperature on Tensile Strength
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Figure 5. Effect of Temperature on Tensile Modulus




Table 2. Graphite Fabric/P1700 Average Test Data
TEST COMPRESSION FLEXURE ILS TENSILE
TEST
DIRECTION
(DEGREES) TEMP.| ULT STRESS| MODULUS | ULT STRESS | MODULUS! Ps| X 103 | ULT STRESS | MODULUS
psi X103 | Psix 106 | psix 103 | Psi x 106 psi X103 | psI x 106
0 RT 56.0 9.2 128.3 1.7 85 774 10.2
0 180°F 1148 7.1 . -
0 300°F 36.2 10.6 88 7.2 35 61.4 10.4
20 RT 96.7 1.7 - . -
90 180°F 80.0 7.7 - - -
20 300°F 66.4 6.7 . - -
181 STYLE GRAPHITE FABRIC (HMF)/P1700 RESIN LAMINATE.
§ Table 3. P1700/A-S Tape . aminate Properties
3 COMPRESSION STRENGTH/MODULUS — TAPE LAMINATES
* LAMINATE | TESTDIR. TEST +700F +180°F 300°F
{
1
é 0° LAMINATE 0o STR. 151,300 102,600 86,200
: E 15.6 16.1 13.1
‘ 0° LAMINATE 90 STR. 20,500 15,800 10,500
E 1.07 1.03 0.97
. 45 LAMINATE o° STR. 21,000 16,200 12,600
: E 2.17 2.04 1.48 ,
' FLEXURE PROPERTIES — TAPE LAMINATES
i
) [0 -90) 0° STR. 168,000 141,000
E 1.3 10.3 t

33,800

1.74




Table 4. Properties of Polyphenylene Sulfide Graphite Fiber Reinforced Molding Compound

COMPOUND FROPERTIES
Color

Injection Pressure, PSI
injection Cylinder Temp., °F.
Mold Temp., °F.

PROPERTIES OF INJECTION MOLDED SPECIMENS

PERMANENCE

Cartbon Graphite Fiber, %

Specific Gravity

Molding Shrinkage, infin, %" Section
¥* Section

Water Absorption, %, 24 hrs. @ 23° C.

MECHANSICAL

impact Strength, 1ZOD, Notched Y.*
Unnotched .~

Tensile Strength, PSI

Tensile Elongation, %

Tensile Modulus, PSI X 104

Flexural Strength, PS|

Flexural Modulus, PS! X 10¢

Compressive Strength, PS|

Hardness, Rockwell R

ELECTRICAL

Dielectric Strength, VPM, S/T
Dielectric Constant, 1 MC, Dry
Dissipation Factor, 1 MC, Dry
Arc Resistance, Seconds
Volume Resistivity, Ohm CM

THERMAL
Deflection Temp, °F., @ 264 °PS:
@ 66 PS!
Flammability
Fiammeability, UL Sub. 94, %”
Coefficient of Linear Thermal
Expansion, in/in/°F. X 103
Therma!l Conductivity, BTU/Hr./
Ft2/°F./in.

AVERAGE VALUES

Black
15-20000
575650
100-350

BASE
RESIN

0

13
0.010
0.029
0.02

04
18
9500
16
0.63
14000
0.55
16000
120

380
31
0.0009
20

RTP
1323

2
138
0.0015
0.002
0.02

0s
30
22000
0.75
25
27000
21
24000
122

NA.
NA
NA
NA
15

500

500+
SE
11

21

ASTM
TEST
KETL.CD

D-192
D-955

D-570

D-256
D638

D-638
D-638

0-695

DATA SOURCE: FIBERITE CORPORATION
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3.0 CONCEPTUAL DESIGN/CONCEPT EVALUATION

2.1 INTRODUCTION

Concept design and evaluations were performed to determine the cost trends
between graphite structural components fabricated using epoxy resin systzams
and those using thermoplastic resin systems. These studies also showed
structural weight savings provided by the advanced composite materials systems.

Several components as shown in Table 5, from the YC-14, a large transport
aircraft, the Firebee missile, and Compass Cope drone were selected for
study. All of them had been previously designed with fiberglass or aluminum
alloys. New designs were developed using graphite/epoxy and graphite/
thermoplastic construction. The resin systems were considered to have a

maximum use temperature of 2750F. The graphite-epoxy and graphite-polysulfone

designs for eacn component were basically the same with slight variations made
to accommodate the unique characteristics of each material. The weight
therefore of each component using the two advanced composite systems was the
same. However, the costs of fabricating the components with the two advanced
composite materials systems were quite different since different modes of
construction were used. A summary of the cost factors and assumptions used

in the cost studies is shown in Table 6.

3.1.1 COST PROCEDURE

Zost procedures were used that were based on cost histories from actual
component fabricatios. They were initially established for graphite-epoxy
composite parts but with same modifications were also used for AFRTP composites.
The resulting method has proven to be accurate for preliminary cost estimates.

To obtain fabrication time for producing detzil parts the number of plies
or precompacted laminates and the areas for each part wecre determined. These
two values were multiplied to obtain the square foot-plies. This value times the




Table 5. Conceptual Design and Evaluation Components

STUDY COMPONENTS APPLICATION
BODY YC-14
LARGE TRANSPORT
BQOM-34E FIREBEE DRONE
WING(YC-14) STIFFENED LAMINATE
HONEYCOMB
AORIZONTAL STABILIZER YC-14
COMPASS COPE

Table 6. Cost Factors and Assumptions

» ! »
WL R ot s nﬂ'.,.?w.m.m‘ﬂﬂa

g

MATERIAL COSTS:
GRAPHITE/EPOXY
GRAPHITE/POLYSULFONE {PRE-COMPACTED)
S-GLASS/EPOXY OR S-GLASS/POLYSULFONE
ADHESIVE
HONEYCOMB CORE

LABOR COSTS

LOSS FACTORS
PARTS SCRAPPAGE FACTOR — 5% FOR Gr/E — 1% FOR Gr/Ps
MATERIAL LOSS (INCLUDES RES!IN, SOLVENT AND STORAGE
LOSSES AND CUTTING SCRAPPAGE BUT NOT OVERAGE
MATERIAL) — 30% FOR Gr/E — 15% FOR Gr/Ps

LABOR FACTORS
MANUFACTURING ENGINEERING
QUALITY CONTROL
TOOL MAINTENANCE
TOOL DESIGN

LEARNING FACTORS
85% LEARNING CURVE FOR BOTH THERMOSET AND
THERMOPLASTIC SYSTEMS

10 UNITS = 7.116 x Unit 1
100 UNITS = 43,754 x Unit !

$25Mb
$25M1b
$12/1v

$ 1/i2

$ 0.03fin3

$30/hr

0.35 x Production hr.
0.15 x Production hr.
0.15 x Production hr.
0.30 x Tool Fab hr.
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factor (mhr/sq ft-ply) provided the manhours required per part and, when all
were added together, gave the total parts manhour cost. The curves used to
select the above factor are shown in Figure 6. The figure relates mhr/sq
ft-ply to the area of the part. Four curves were used to irdicate
comnlexity. These curves were developed from actual fabrication experience
and are intended to establish the costs of the first production unit.

: Assembly time was obtained by multiplying the total area of the parts by a
o fector mhr/ftz as shown in Figure 7. Three curves are shown which indicate
complexity of the component. These curves were also based on cost data
obtained from actual assembiy of composite components.

To obtain the total production cost the manhours for each part were added and
the total multiplied by a parts scrappage factor. Tne assembly cost was then
added to obtain the production hours. The manufacturing engineering, quality
control, and tool maintenance manhours were obtained by factoring these
production hours. This total was the value used as the recurring production
cost.

The material costs were obtained by adding the cost of the composite to the
cost of other materials used such as honeycomb and adhesive. The net
composite weight was obtained by adding the sq ft-ply values obtained for each
part and multiplying by the preper factor (1b/sq ft-ply). A material loss
factor and a part scrappage factor were added to obtain ihe total composite
weight required. A cost per pound value was then used to get the composite
cost. Honeycomb cost was determined by finding the cubic inches of core
requirement and using a cost per cubic inch factor. The adhesive cost was
determined from the area and the cost per unit area.

The tooling costs were obtained using Figure 8 which indicated the
relaticnship of tool area to cost per unit area. Four levels of complexity
are indicated. These curves were based on actual tool fabrication data and
indicated the shop hours required to fabricate the tool. The design hours
required for tooling were obtained by factoring the fabrication hours. The
sum of the tool design a.d fabrication hours gave the total nonrecurring

tooling hours.
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3.2 YC-14 FUSELAGE BODY SECTION 43

A YC-14 fuselage advarced composite design was developed which uses a honey-
comb sandwich shell as the primary load carrying structure. The honeycomb
construction incorporated HRH hcneycomb and graphite-epoxy or graphite-
polysulfone skins. The design utilized large bonded assemblies and a minimum
number of frames and bulkheads to reduce the total number of parts. Major
assemblies were assembled using mechanical fasteners. Figure 9 shows the
structural centerline drawing of this design.

Body section 43 was selected as a representative YC-14 fuselage component for
the weight and cost study. Figure 10 shows the details of this section. A
detailed weight and cost estimate of the section between Stations 300 and 440
was made and then scaled to obtain the Section 43 estimated weighis and costs.
Both advanced composite designs were approximately 20 percent lighter than the
equivalent aluninum design, The cost estimates comparing graphite-epoxy and
the graphite-polysulfone designs are shown in Table 7. As shown, the cost of
the graphite-polysulfone design is significantly less by the tenth part and
its cost effectiveness continues to improve as production quantities increase.

3.3 LARGE TRANSPORT A/C FUSELAGE PANEL

A typical sidebody panel for a la:gje transport A/C was studied to compare the
costs between a graphite-epoxy design and a graphite-polysulfone design. The
all-aluminum design had conventionai hat stringer stiffened skin and zee

section frames. The advanced coimposite design described in Figure 11 has a
graphite laminate skin stirffened by graphite "T" stringers, three composite
rings, and two aluminum frames. Graphite pultrusions reinforcei the outstandinc
Jegs of the stringers. The ring stiffeners are made of HRP core with graphite
laminate face skins. Graphite laminate shear clips attach the aluminum frames
to the skin.

Both advanced composite designs were approximately 16 percent lighter than the
eguivalent aluminum design. The cost estimates comparing graphite-epoxy and
graphite-polysulfone designs are shown in Table 8. As shown, the graphite-
polysulfone components were more cost effective than the graphite-epoxy
components after only a few of the assemblies were produced.
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OUTER SKIN

(GRAPHITE/ COMPOSITE
: CIRCUMFERENTIAL TEAR

STRAP (GRAPHITE/ COMPOSITE)

INNER SKIN (GRAPHITE/ COMPOSITE)

LONGITUDINAL TEAR STRAP (GRAPHITE/ COMPOSITE)

View B

ALUMINUM SPLICE
STRAP (TYP)

030 MIN
OUTER SKIN |
(GRAPHITE/ COMPOSITE) € SYMMETRY
LH SKIN PANEL

NiUM DOUBLER
YP)

LONGITUDINAL TEAR STRAPS HRH CORE (6.14/FT)

@ 25" PITCH P
SEE VIEW B INNER SKIN (GRAPHITE/ COMPOSITE)

HRH CORE {3.14/FTJ)

View A

Figure 1Q. Fuselage Section 43 — Details
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3.4 FIREBEE DRONE CENTERBODY SECTION COMPONENTS

The XBQM-34E supersonic Firebee drone graphite-thermoplastic panel and door
component designs were developed, fabricated, and delivered to NADC for ground
testing under NADC Contract NG2269-74-C-0368, "Development of a Low Cost
Graphite Reinforced Composite Primary Structural Component." The location of
the components on the drone are shown in Figure 12 and their design details
are shown in Figures 13 and 14, Figure 15 is a photograph of the actual
delivered hardware.

Element and subcomponent tests confirmed the practicality and structural
performance of the design concept. Weight saving for the retrofitted
graphite-thermoplastic components was 5 percent.

Estimates were made of the costs for producing these components using
graphite-epoxy and graphite-polysulfone. Table 9 shows a comparison of these
two cost estimates. As shown, the graphite-polysulfone components are more
cost effective than the graphite-epoxy components after the first few
production parts.

3.5 YC-14 STIFFENED LAMINATE WING BOX

A multi-rib skin stringer wing box design was developed for the YC-14 as shown
in Figure 16. The box was designed to be fabricated as a single component
from tip to tip. It consisted of upper and lower stringer stiffened

graphite laminate skins, a front ard rear spar, and 66 ribs. The spars were
a graphite laminate construction and the ribs HRH honeycomb core with graphite
laminate face skins. The spars and ribs are detailed in Figure 17. The skin
stringer consisted of an HRH honeycomb core filler and graphite pultrusions
overvrapped with 1450 graphite laminate plies. The honeycomb is used to
maintain a constant stringer cross section as the pultrusions are tapered
along the length of the wing box. The upper skin panel stringers incorporate
four pultrusions, the lower skin panel stringers two pultrusions. Details of
the stringers are shown in Figure 18. The wing box design was sized to have
the same bending and torsional stiffness as the YC-14 aluminum box. The
surface panels were limited to ernax = 0.0044 in./in. at ultimate load.
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Figure 18 Stiffened Laminate Stringer Configurations
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A weight estimate of the design is summarized in Table 10. As shown, the

stiffened graphite laminate wing box is approximately 25 percent lighter than
the equivalent aluminum design.

Estimates were made of the costs for this component fabricated using graphite-~
epoxy and graphite-polysulfone laminate and pultrusion material. Table il
compared these estimates and shows the graphite-polysulfone is more cost
effective by the tenth production component.

3.6 YC-14 HONEYCOMB WING BOX

A multi-spar-rib honeycomb wing bcx was developed for the YC-14 as shown 1in
Figure 19. The box was designed to be fabricated as a single component from
tip to tip. It consists of upper and lower skin panels, a front and rear
spar, two intermediate spars, and twenty-four ribs. These are all HRH honey-
comb parts with graphite laminate face skins. The intermediate spars are )
continuous members while the ribs act 2s intercostals between spars.

e s

P T Yy

The wing :
box design was sized to have the same bending and torsional stiffness as the %
YC-14 aluminum box. The surface panels were Timited toe;max = 0.0044
in,/in, at ultimate load.

"

e R 2k WY

A weight estimate of the design was made and summarized in Table 12. The

honeycomb wing box is approximately 29 percent lighter than the equialent
aluminum design.

Estimates were made of the costs for fabricating this componeni using graphite-

epoxy and graphite-polysulfone face skins. Table 13 compares these two cost
estimates.

e

As shown, the graphite-poiysulfone components are most cost effective
than the graphite-epoxy components after the first few production parts. The
graphite-epoxy component costs were based on data obtained from a 6-foot box
section fabricated under Boeing in-house funding.

3.7 YC-14 HORIZONTAL STABILIZER

YC-14 horizontal stabilizer advanced composite designs were developed for
evaluation. The stabilizer had a 17-1/2 ft. semi-span with a root chord of
5-1/2 feet and a tip chord of 3 feet. The designs were based on a muitispar

S T TR
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(4) concept and incorporated several full and partial ribs.
diagram of the stabilizer is shown in Figure 20.
were stiffened with beads.
two back-to-bach angles.

in Figure 21.

A centerline
Both the covers and the ribs
The spar webs were stiffened with "Tees" made of
Details of a typical spar/rib intersection are shown

The cover panels, spar and rib webs were all made of graphite/
polysulfone fabric oriented at 1450.

Tne weights of both the Gr/E and GR/Ps designs were determined. They were

compared to the existing aluminum design and estimated to be approximately
35 percent Tighter.

Cost studies were also performed which compared the fabrication cost of
graphite-epoxy components with graphite-polysulforie components. The results
obtained were consistent with the results obtained in previous cost studies.

Because of higher tooling cost the first unit production cost of a YC-14
horizontal stabilizer using graphite-polysulfone was higher than the design
using graphite-epoxy. But, because the graphite-polysulfone design required
Tewer production hours, it could be produced at a lower net cost by the
production of the tenth unit. Table 14 summarizes the data developed while
evaluating YC-14 horizontal stabilizer productior. costs.

3.8 COMPASS COPE HORIZONTAL STABILIZER

A Compass Cope advanced composite horizontal stabilizer design was developed
which used a honeycomb stabilized skin. The existing design utilizes

fibergl-ss sandwich construction as shown in Figure 22. The stabilizer was

180 inches long and 20 inches between its forward and rear spars as shown in
Figure 23. Typical details of the composite design are shown in Figure 24.
The upper and lower panels were stabilized with 1/4 in. thick, 3 1b Nomex
core. The face skins were 0/+45/90 graphite laminates. The rib webs are also
stabilized with Nomex core.

The weights were determined for both the Compass Cope fiberglass honeycomb
design and the graphite designs developed in this study. This data showed

that the composite designs (graphite-epoxy and graphite-polysulfone) were 36
percent lighter than the fiberglass honeycomb design,
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Studies were also performed to Jetermine the relative costs between the
graphite-epox; and graphite-polysulfone designs. A summary of this data is
shown in Table 15, As shown, the graphite-polysulfone design is more cost
effective by the production of the tenth unit. The first unit is more
expensive because of higher tooling cost. The significantly Tower production
hours required for producing the graphite-polysulfone parts amortizes the

difference in tooling in a manner which makes the tenth producticn part more
cost effective than the equivalent graphite-epoxy part.

Another cost study was made in which the cost of producing the
fiberglass/epoxy honeycomb design was completed to the graphite-polysulfone
design. In this study the fiberglass/epoxy material costs were based on
aerospace quality material of $12/1b and the graphite-polysulfone at tedays
cost of $65/1b. The cost data is summarized in Table 16. As shown, the Tow
production cost of the graphite-polysuifone design offsets the increase in
material and tooling cost by the fabrication of the tenth part.

3.9 CONCLUSIONS

Seven aircraft and missile structural components were evaluated in this
program (Table ' . The evaluation compared advanced cumposite component
designs with ex.sting aluminum or fiberglass designs. In all cases the
results showed that the composite designs were lighier than the more
conventional designs. The weight savings were from 5 percent for replacement
vody panels on the Firebee Drone to 36 percent provided by a new compusite
design of the Compass Cope's horizontal stabilizer.

One of the major objectives of this study was to obtain the relative costs
between producing components utilizing graphite-spoxy materials and
graphite-polysulfone. The study results consistently showed that using an 85%
learning curve, the graphite-polysulfone parts were more cost effective by the
production of the tenth unit. The tooling cosis were higher for the
graphite-polysulfone because of higher process temperatures and pressures.
This additional cost was offset by the lower production costs, thereby
producing a lower cost part by the production of the tenth unit. In general,
the first unit cost of a thermoplastic component was 14 percent higher than
the epoxy compcnent. By the production of the tenth unit, the cost of
thermoplastic parts averaged 33 percent less than the epoxy parts.

45

il B Gl

Wby s

;
S o s iad 9%

i
H
K

S
&
3
=
£
]
=
bz
=
=
£
=
E
4
=
L

o=
;‘§
=
=
%
2
=
e
===
=

i




19w

T PR PRI By ALl AP 3 R D P

VG R DK T

G BRI AT

D

=t

e
=

Al
|

et v i TSR BHLEICTEN G R A IR DL ] R
T T, KSR L 8 T T P W TS BT Gl

P—

086'CYE’L | 069°L 000'9L2 606'EE 0oL
oL’y | 069°L 009°LZ S16'S oL
('g1/598)
oLL'9L 0691 09,2 seL L INOJINTA10d/ALIHAVYHO
ssi'esy’L | ols 000°09 OEL'SY oot
o6z'85Z | 018 000'S 009°L oL
(rg/z1L$)
0v6'9S ots 009 890’1 L AX0d3/SSY1D
suv110a | sunoH | s¥viioa| sHnoW SLINA
1505 1v101 | ON17004 | IviHILYW | NOILONGOYd | 40 "on | TVIE3LVI 3LISOJWOI Q3INVAQY
U0y NSA1O/d11ydeID pue
Axod3/ sse|9 - 8jewis3 Is0]) 43z1/1qelS |eIU0ZIIOH adoy ssedwoy -9f3Iqef
086°tLL’L 069°L 000°901L 606'EE 001
we'ezz 0691 009°0L 816's ot
0L0's¢L 069'L 090°tL sLL l INOFTNSATO0A/ILIHIVHED
8LY'LYS'L oL8 00E°1Z1L 0£L'9Y 0oL
9z¥'voz oi8 0£L'ZL 00" oL
£55°LS 018 £1Z'L 8901 1 AXOd3/3LIHAVYO
SHVY1100 SHNOH | sYv110a SHNOH SLINN
1S0DIVLOL | ONITOOL | IVINZLVW | NOILONAOHd | d40°ON | 1VIHILVW 3LISOJWOD d3ONVAQY

318W13s3 150 48211GRIS [EIUOCZIION 331s0dW o) PasugApy 3d0D ssedwo) ‘Gl d1qel




nl:;

v
- b A ILR L 1R ar ot Ky

Pa— v

4.0 MANUFACTURING DEVELOPMENT

A series of studies were performed to evaluate graphite thermoplastic
processing methods. The areas of study included laminate consolidation,
post-forming bonding and joining methods and chopped fiber molding
fabrication. A summary of the areas investigated is shown in Table 17.

4,1 CONSOLIDATION

Four Taminate consolidation methods were investigated. They were accomplished
by press, autoclave, pultrusion and roll-forming.

4,1.1 Press Consolidation

Press lamination studies were performed which resulted in a two-hour cycle for
a 4 ft2 1aminate (0.5 hr/ft2). The time per unit area was dependent upon
the capacity and capability of the press utilized. If the press had rapid
heating or cooling capability, the cycle time could have been reduced. The
two-hour cycle was based on a part/mold assembly heatup rate of 100F/min
from room temperature to +6500F and cooldown to +1000F. The cycle time
could have been reduced to 1.25 hr if the part/mold was preheated to +3500F
in an oven or other facility prior to insertion in the press and then molded
at 6000F /200 psi, and removed at +3000F on the cooldown cycle.

Consolidation costs could have been further reduced by laminating multi-sheets
at one time using a separator ply between Tayers. This technique would have
increased the cycle time due to ieat flow but the time per ft2 of laminate
would have decreased signifiantly as shown in Table 18. This table
assumed three sheets were molded simultaneously.

Figures 25 and 26 show the cross section of a press consolidated
unidirectional laminate and a 18l-style fabric laminate respectively.
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Table 17. Task I1V-Manufacturing Development

ASSEMBLY METHODS:

QUALITY ASSURANCE TECHNIQUES:

LAMINATE CONSOLIDATION:

POST-FORMING METHODS:

BONDING/JOINING METHODS

CHOPPED FIBER MOLDING:

ROLL LAMINATION

PULTRUSION

AUTOCLAVE LAMINATION
PRESS LAMINATION

o
o
o
0

PRESS (MATCHED-DIE)

=]

o AUTOCLAVE MOLDING
o VACUUM FORMING

o PULTRUSION

o FUSION

o ADHESIVE BONDING
o MECHANICAL FASTENING

o INJECTION MOLDING
MATCHED-DIE

FUSION
ADHESIVE BONDING

Table 18.

Processing Time for Consolidation

AUTOCLAVE

PULTRUSION

ROLL-FORMING

- SINGLE SHEET

- MULTIPLE SHEET

- SINGLE SHEET

- MULTIPLE SHEET

- SINGLE SHEET W/PRE-HEAT

10

0.125

0.041

2-6 INCHE$/min.

Not established
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Press Consolidated 181 Style Graphite Fabric Laminate
4

Figure 25. Press Consolidated Unidirectional Laminate

Figure 26.
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4.1.2 Autoclave Consolidation

Autoclave laminating has an advantage because large areas can be iaminated at
one time. The cycle time on Boeing's small autoclave (4 ft dia x 8 ft long)
was 4 hr. This included bagging and debagging and allowed for a heat rise of
100F/min with a 30 min hold at temperature followed by a 120/min cooldown
to room temperature. Laminating 32 ft2 resulted in costs of 0.125 hr/ft2
to 0.041 hr/ft2 when three sheets vere laminated simultaneously. This low
cost consolidation was accomplished without major tooling expense.

4,1.3 Pultrusion Compaction

Existing graphite-epoxy pultrusion equipment was modified to provide higher
temperature and pressure capabilities needed for making graphite thermoplastic
pultrusions. The existing microwave pultrusion chamber was used as a first
stage preheat in series with a second stage where resin softening and
compaction occurred. The new second-stage cure chamber consisted of
30-in.-long electric conduction heated chrome steel platens, which were
hydraulically actuated with a 200 psi pressure facility. The first 15 inches
of the platen was heated while the remaining 15 inches were force-air cooled.
The pultrusion puller system was modified to provide increased pulling
capabilty. A flow chart of the thermoplastic pultrusion facility is shown in
Figure 27.

Three basic polysulfone/graphite pultruded shapes were fabricated in these
studies. These were 3-in. wide solid laminates, 1l-in. x 1-in. anglus, and
0.040-in. x 3-in. wide sandwich. Three-inch wide tape, 0.005-in. thick was
used for making the solid laminates. Eileven- and eighteen-piy laminates were
made at speeds varying from 1/2 in. to 6 in. per minute. The best results
were obtained at temperatures of 6000F and pressures of 200 psi at pull
spceds of 2 in. per min. Angle sactions were also made using 12 plies of
0.005 inches thick tape. The best results were obtained using apprcximately
the same process parameters described above. The above sections were also
made using polysulfone impregnated woven fabric. This form of material proved
to be much more difficult ic handle since it would neck down when pulled

through the dies. This was solved by using a supporting teflon fabric on both
sides of the laminate.
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Sandwich panels were made using woven fabric face skirns and polyimide core.
Although the feasibility of producing sandwich sections was established, the
finished parts had insufficient peel strength between the face skins and the
core due to inadequate adhesive filleting. This characteristic could be

improved by using face skin material with a polysultone resin rich surface on
the core interface for a more compatible adhesive system. A photograph of the
three sections pultruded is shown in Figure 28. These parts were sectioned;
inspection showed them well compacted and free of voids.

Flat platens with side bar inserts were used for producing the flat laminate
pultrusions and two-part dies for the shape pultrusions. Ceramic platens or
dies were used in the first stage (MW heated) and chrome plated steel in the
second stage (electric cartridge) heater.

The studies demonsirated the feasibility of producing pultrudad graphite
polysulfone structural shapes. Future potential improvements include extruded
sandwich panels whose face peel strengths were low but which could be remedied
by using prepreg that was resin rich on the core side; or by providing an
adhesive system which would provide better filleting and one that would be
compatible with the short processing times in the pultrusion equipment. This
could be either a thermoset or a thermoplastic adhesive system. The
pultruding equipment could also be further improved by using longer platens

which would allow an increase in pull force by reducing platen friction. This
also could be accomplished by developing an air bearing platen.

4.1.4 Roll Forming Compaction

A survey was performed to find a commercial source with the equipment and
capability to perform continuous roll compaction. Several companies were
contacted which had adequate rolling equipment but lacked the temperature
capability since they were steam heated. This effort was discontinued.

4.2 POST FORMING
The post-forming methods investigated were (a) press match die, (b) autoclave,

(c) vacuum forming, and (d) pultrusion forming which was discussed in the
previous section and therefore will not be covered here.
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4.2.1 Press Match Die Post Forming

o

Several parts were made by post forming in a press with match dies. This
technique consists of preheating a consolidated laminate and then placing it
in warm dies Tocated in a press for forming. The consolidated material is
heated to approximately 500%F while the die is restricted to the 300° to
3250F temperature range. The die tends to cool the part below the polymer
softening point (345°F) after forming. This method will produce typicai
parts in a time span of 6 to 8 minutes which is considered highly acceptable
for production. The channel shown in Figure 29 was produced by this
procedure. The eight-ply laminate used to produce the channel was pre-
heated, placed over a female metal die, and then pressed to its final shape
with a silicone plug. The silicone plug enabled the fabric to fill in all
corners of the mold with uniform pressure resulting ir a well compacted high
tolerance part. Figure 30 shows a double contoured part that was
successfully produced by this method.
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4.2.2 Autoclave Post Forming

cmao bt Pihe

Several parts were successfully post formed in an autoclave in this program.
The process is similar to the press die forming except autoclave pressure is
used to form the part. The cycle time in the autoclave was approximately 3.0
hours which was less than used for consolidation because the hold time is not
required. Also, the forming temperature was reduced since parts are heated to
slightly abce the softening temperature. The autoclave post forming cycle is
significantly less time than the cure cycle for epoxy parts and therefore has
economical advantages for producing large composite parts. Costs are saved in
shorter cycle times thus providing more facilities usage; less labor costs and
on some cases less total energy usage.

Figures 31 and 32 show two parts that were formed by using autoclave
pressure. In Figure 31, a web is shcwn which was formed out of
graphite-polysulfone tape oriented at (0°,90%). Figure 32 shows a shear web
formed out of fabric using the same tooling. Both parts were carefully
examined and no delaminations or ::rious fiber distortions were found.
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Figure 30. Press Molded Shapes-Silicone Plug Mold
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Figure 31. Shear Web Molded From (0/90)g Graphite Tape Composite

Figure 32. Shear Web Mo!ded Form Graphite Fabric
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4.2.3 Yacuum Forming

Vacuum forming proved to be a cost-effective method of making formed parts.
Figure 33 shows shear-web 0.040 in. thick which was formed from 0° to 90°
sheet stock made from tape. A graphite fabric laminate part is shown in
Figure 34. Both parts were vacuum formed using a 10-minute cycle. Figure 35
shows a schematic of the vacuum forming equipment. It consists of three
stages. The laminate was loaded in Zone 1 where it was then moved to Zone 2
which consists of an oven. The laminate was heated with radiant lamps to 550
to 600°F and then moved to Zone 3 where the actual forming takes place. The
not laminate was formed over an aluminum tool with vacuum pressure. when full
vacuum was on the part, the forming cavity was pressurized with plant air (80
psi) to consolidate the part. Figure 36 shows a schematic of the forming
chamber. The laminate was then cooled and removed as shown in Figure 37.

Time studies on a production basis showed parts could be produced on a 10-12
minute cycle. The main factor governing the cycle time was part thickness and
the time associated with bringing the laminate up to forming temperature.

Vacuum forming provides extremely accurate and reproducible parts. The process
could be improved by increasing the auxiliary air pressure from 80 to 150

psi. This increased air pressure produces a very high quality structural
laminate in all configurations.

4.3 BOKDING/JOINING METHODS

Three methods of load transfer were investigated. They were by fusioen
bonding, adhesive bonding, and mechanical attachments.

4.3.1 Fusion Bonding

Fusion joints were formed by using heat and prescure to fuse the _omposite
matrix material. A previous contract (NASC Contract No. N00019-72-C-0526)
demonstrated that lap bond strengths in excess of 8,000 psi cculd be
developed in unidirectional graphite P1700 composites. This value was
obtzined by fusion at 550°F anG 200 psi. The efforts in thic program were
directed toward forming fusion bonds using techniques requiring less pressure
and irore conducive to multi-part production.
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Figure 34. Vacuum Formed Shes, Web Graphite Fabric
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Figure 37. Graphite Thermoplastic Vacuum Forming—Part Removal
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One approach investigated placed resistance wires at the bond interface and
applied a potential across the joint interface. As a result the heated wires
softened the polysulfone which fused and formed the joint. Figure 38 shows a
polysulfone adhesive film 2.5 mils thick with the resistance wires embedded.
Figure 39 shows a joint made with this type of film and minimum contact
pressure, Lap shear values in the range of 1,400 psi were obtained with
specimenc wade from this joint. However, the interface in this joint had only
25 percent of the area fused. The wire (28 ohms/ft) did not generate enough
uniform heat. Based on this data it seemed likely that if total area fusion
was obtained then shaar strengths in the range of 4,000 to 5,000 psi were
possible. Figure 40 shows a cross-section of the fused area in the joint.
Some voids are evident hut in general excellent fusion was obtained.

Another series of specimens was made in which stainless steel screen (&0
mesh) was used as a resistant heater. This type of adhesive screen is shown
in Figure 38. This joint was formed in 90 seconds using a pressure of 10
psi. The composite overheated as shown in Figure 41 but lap shear values of
3,800 psi were obtained. All failures were adhesive at the wire mesh
interface. The 80-mesh wire is a very close weave and therefore very little
penetration of the screen occurrec. Additional joints were made at a lower
pover setting to prevent overheating the composite. This worked very well but
the joint sirength was not increased and the failure mode remained the same.
Although additional work could not be performed in this program, the
resistance wire heating technique proved very promising and warrants further

research.

Another joining technique that was investigated and proved promising was
electromagnetic bonding. WUith this method, a lap shear value of 3,750 was

obtained.

Electromagnetic bonding utilizes the principle of induction heating between

two abutting thermoplastic surfaces, to fusion temperature, via a heat-activated

electromagnetic adhesive layer. The electromagnetic material at the bonding
interface consists of a dispersion of finely divided metal particles in a
thermoplastic matrix. \hen the interface is subjected to a high frequency
alternating current, fusion temperature is instantly achijeved. Under slight

pressure a bond is formed. Figure 42 shows a cross section of a bond that was
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s Figure 38. Polysulfone Adhesive Films with Self Contained Heating Wires
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Figure 39. Fusion Joint—Resistant Heating Wires
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Figure 40. Fusion Joint—Close Up

Figure 41. Fusion Joint—Resistant Heating Screen
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Figure 42. Electromagnetic Bonding
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formed in a matter of 5 seconds. The joint shows some porosity, indicating
more pressure or process refinements are required but the composite-adhesive
interface is not discernible. The light particles in Figure 42 are the
polycarbonate electromagnetic filler used in the adhesive.

4.2.2 Adhesive Bonding %

Several specimes were fabricated and tested to obtain load transfer

- capabilities for graphite-polysuifone adhesive bonded joints. A toom temperature
curing adhesive, Hysol EA 934, was evaluated to obtain data for developing field :
h repair techniques discussed lat2ar in this report. The average lap shear values

obtained are summar zed in Tabie 19. An elevated temperature (250°F) cure

adhesive was also tested to obtain data for primary joints in the design of
components. This data is aiso summarized in Table 19. Specimens were also
fabricated with tape orientated at (00). A summary of this data is shown in §
Table 20 along with data from other joining methods.

4,3.3 Mechanical Fastening

2R d e et .J' LN

A study was made to evaluate the effect of die-punching holes in a thermoplastic
laminate in contrast to the conventional method of drilling and reaming. Holes
1/4 in. in diameter were die-punched in laminates of three different thicknesses,
0.022, 0.44, and 0.066 in. The laminates were then tested in tension and
compared to an unpunched laminate. Similar tests were conducted using a 1/4 in.
drilled and reamed hole. The resuits are shown in Table 21. The punched hole
was more effective on the thin laminates (0.022) than the drilled and reamed hole
since the drill has a tendency to "bite" into the thin material. The two methods
of hole preparation appear comparable on the 0.044 in. thick laminate. With the
thicker laminate (0.066 in.), the force to die-punch the material appears to do
considerable damage around the hole, resulting in a loss in iaminate properties.
Figures 43 and 44 show a ccmparison of a punched and drilled/reamed hole on a
0.066 in. laminate. Subsequent tests determined that a punched hole cleaned by
reaming, is similar to a drilled/reamed hole (see Table 22).
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Table 19. Adhesive Lap Shear Strengths [2>>

CURE V SHE

ADHESIVE TEMPERATURE AioanE STRENGT (bs1) :

deg F D
HYSOL EA 934 R.T. VACUUM BAG 2025 E
§
HYSOL EA 934 R.T. SPRING CLAMPED 1850 "g
HYSOL 9628 250 deg AUTOCLAVE 90 PS! 2640 §
z
[ sINGLE 1/2in OVERLAP SHEAR TESTS -

j
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s e

[Z> AoHERENDS - (+45) FABRIC

Table 20. Bonding Methods — Typical Values

R i

LAP SHEAR 5

BODING METHOD STRENGTH 3

psi =

;2

{2

FUSION BOND 8000 .

RESISTANT HEATED BOND 3800 Q :

ELECTROMAGNETIC FUSION| 3750 i Es

EPOXY ADHESIVE 4200 | 2
ULTRASONIC BONDING 1400 b




Table 21. Attachment Studies — Hole Fabrication Evaluation

THICKNESS| CONTROL | DRILLED & 1 pyncHED
'C, . REAMED v i
(in) (psi) (psi) (psi)
4 PLY 0°/90° LAMINATE 0.022 71,000 44,300 52,000
8 PLY 0°/90° LAMINATE 0.044 70,000 64,000 62,400
12 PLY 0°/90° LAMINATE 0.066 88, 000 76,000 66,000
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Figure 43.
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Figure 44. Drilled/Reamed Hole — 1/4 Diameter (50X)

Table 22. Attachment Studies — Reamed Hole Evaluation

HOLE CONDITION - 12 pLY (0°, 90°) CONTROL
TESTED loN TENS'ON PUNCHED ]/4-.

AT +70°F DRILLED &

REAMED

PUNCHED &
REAMED
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4,4 CHOPPED FIBER MOLDING

Present elevator fittings are machined metal designs which are quite costly to
produce. Studies were therefore made to evaluate the potential of reducing
these costs by producing the fittings by injection moldirng or close die
molding using chopped fiber thermoplastic materials. Although most of the
effort was expended on close die molding evaluation, some injection molding
material properties were developed.

4.4.1 Injection Molding

One injection molding material was tested to establish its properties. This
material was Ryton PPS made by Phillips Petroleum. Flexure specimens were
cut from injection mclded sheets approximately 0.17 inches thick. The
specimens were oriented in both the 0° and 90° directions and were tested

at room temperature and 180°F. A summary of this data is shown in Table 23.

4.4.2 (Close Die Molding

A close die molded fitting design was develcped which incorporated two molded
pans fused back-to-back tc provide the main load path for transmitting hinge
loads to the elevator box assembly. Two molded trusses were also incorporated
by fusion bonding tc provide additional bearing area at the load pick-up point
and also, additional lateral stiffness. Details of the design are shown in
Figure 45.

Two types of fittings were produced. Both incorporated the two three-sided
molded fabric pans fused back-to-back. One type of fitting incorporated
fabric molded trusses and a second chopped fiber molded trusses.

The three-sided pan details were fabricated by first making a preform and then
compacting it in an autoclave. Fabric plies were cut to the proper shape and
then formed and stacked into a preform as shown in Figure 46. The preform was
then placed on a tool and covered with caul plates (Figure 47). This assembly
was ther bagged and placed in an autoclave and the pan compacted at 200 psi
and 600°F for 30 minutes. Figure 48 shows a pan after compaction. It.was
then trimmed to the proper configuration prior to installation in the fitting
fusion tool.
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Table 23. Injection Molding Material Flexural Properties — Ryton PPS (Phillips)

DIRECTION TEMPERATURE UL(T‘;SS”T RESS ?:(03)%;“”5
0° AT 18.2 18
o° 180°F 16.5 1.3
90° RT 7.6 1.1
900 180°F 9.7 0.76
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Figure 48. Molded Fitting — Compacted Pan Prior to Trim
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Chopped grapnite molding mateirial was used to make the trusses for one of the
fittings. The required amount cf chopped fibe moiding material vas weighed
and placed in a compaction tool. This assembly was placed in a press and run
at 600CF for 30 minutes. Figure 49 shows a pile of the molding material and
a completed truss. Figure 50 shows the truss compaction tool.

A second fitting was made using fabric molded trusses. The plies of graphite-
polysulfone fabric were first cut to shave in a dinking die. They were then
placed in the tool shown in Figure 50 and compacted at 600°F for 30 minutes.
Figure 51 shows the dinked out plies and a completed fabric truss.

The fitting detail parts were then assembled in the molded fitt:ng fusion
assembly tool. Figure 52 shows the detail pearts. Figure 53 showc them in the
tool and Figure 54 after the pans have been placed in positicn. 7he fusion

pool was then assembled as shovn in Fiqure 55 and then placed in a press.

Fusion was performed in the press at 600°F for 30 minutes. A completed graphite-
polysulfone molded fitting is shown in Figure 56.

The first two fittings produced were not up to the desired qualitv. Web and
flange thicknesses were not consistent. The insert tooling was changed to
improve the containment of the fitting molding material by cutting back the
amount of silicone used. Two more fittings were produced with the modified
inserts. Their quality was much better than the original two produced.

The initial two fittings produced were tested to establish their load carrving
capabilities. The fitting with the fabric molded trusses was tested for two
YC-14 elevator fitting ultimate Toad conditions, four Tifetime fatique cycles
and finally a pull-out test to failure. The first fitting (fabric truss) was
bolted to a test fixture as showr in Figure 57. This fixture was then mounted
in a test machine at an angle that would provide the required load components.
Figure 58 shows a photo of a typical test set-up. Figure 59 shows the fitting
positioning used to provide the ultimate load conditions. The fitting was
Joaded to two different ultimate load conditions (see Figure 59) without apparent
damage. The fitting was then subjected to 120,000 fatigue load cycles at 42%
of ultimate at the position #2 load condition (see Figure 59) without

apparent damage. This represents four times the required
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Figure 49. Molded Fitting — Chopped Graphite Fiber Molded Truss
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Figure 52. Mulded Fitting — Detail Parts and Fusion Assembly Tool!

Figure 53. Mgided Fitting — Fusion Too! With Details Installed
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Figure 54. Molded Fitting - Details and Pans in Tool
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Figure 55. Molded Fitting - t ision Assembiy Tool Ready For Press
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Figure 87. Molded Fitting — Test Ser-Up Without Side Plate
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Figure 58. Molded Fitting ~ Test Set-Up
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ULTIMATE LOAD TEST,
POSITION No. 1

ULTIMATE LOAD TEST,
POSITION No. 2

TEST TO FAILURE,
POSITION No. 3

AFT LOAD =

200 LBS

DOWN LOAD =
9600 LBS

AFT LOAD =

SSWLBS/’

UP LOAD =
7700 LBS

Figure 59. Molded Fitiing — Test Load Conditions
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9602 LBS
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design life cycles of the elevator fitting. The fitting was then repositioned
to position #3 as shown in Figure 59. A puil-out load was applied until
failure occurred at 15,050 1b, as shown in Figure 60. The fitting failed in
the web-flange radii. A close-up of the failure is shown in Figure 61.

A fitting #ith the chopped fiber trusses was also tested to failure. This
fitting was mounted in a test machine in position #3 (Figure 59). A pull-out
load was applied until failure occurred at 11,600 1b. The fitting failed in
tension in the lug area. A close-up of the failure is shown in Figure 62.

Both the fabric truss fitting and chopped fiber truss fitting failed above the
highest ultimate load component even though they were loaded in a more severe
direction. The fitting failure modes showed that the fabric truss concept
provided better load transfer capability from the lug to the bolted flange
area.
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Figure 60. Molded Fitt




Figure 61. Fabric Truss Molded Fitring Failure
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Figure 62. Chopped Fiber Truss Molded Fitting Failure
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5.0 FIELD MAINTENANCE/REPAIR METHODS

Studies were initiated on field repair and maintenance procedures for graphite
reinforced thermoplastic composites. The methods emphasized were the repair
of laminate penetraticn or major damage under field conditions. Accordingly,
facility limitations were imposed which only permitted the use of portable
vacuum pressure and heat sources.

Several panels were tested that incorporated repaired areas. The panels were
made of 4 plies of 181 style graphite fabric orientated at (00,900) and were 6
in. wide and 16 in. long. Damaged areas 1 in., and 3 in. in diameter

were repaired. The frayed area of damaged zone was removed with a hole saw of
the appropriate diameter. The edges were then scarfed by making several hole
saw cuts each successive one being larger in diameter and one ply deep. The
end result was a stepped joint of four concentric circles as shown in Figure
63. The area around tne hole was then solvent cleaned with Methanol,
Individual plies of fabric prepreg were then fitted to the hole. The repair
was then accomplished by adhesive or fusion bonding using a portable vacuum
and heat source. A typical repaired damage is shown in Figure 63.

Several different heat sources were evaluated. They consisted of a heating
blanket, locaiized (spot) resistance heater, hot air gun and resistance wire.
Of these, the hot air gun (Figure 64) proved to be the best. The location and
rate of heating was most easily controlled by this method since the operator
had good visibility of the area being repaired. The other heating methods
caused panel distortion due to rapid rate of heating and/or non-uniform
heating.

Using a heat gun as the heat scurce, a potch could be heated to a temperature
of 500 to 550°F. It was found that a more uniform patch could be achieved

if an aluminum back-up plate (x 0.060 in. thick) was used. The plate helped
distribute the heat and minimize distortions. A standard fusion repair could
be made in 15 to 30 minutes. Figure 63 shows a completed repair made by
fusion. A cross section of a repair patch made by this method is shown in
Figure 65.
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Repairs were also made using epoxy adhesives EA934 and EA9628 (Hysol). The
hole preprations were the same as used for the fusion repair. The replacement
pztches, however, were preconsolidated in a press {consolidated patches can
also be used in the fusion process), as shown in Figure 66. EA9629 adhesive
was applied between each layer of the patch. It was then vacuum bagged and
then cured 90 minutes at +2500F with a heating blanket. Similar procedures
were used with EA934 adhesive except the patch was cured at room temperature.

A total of 12 panels were tested. Two were used as controls. Eight repair
panels were static tested. They were conducted in a 120,000 1b capacity
Baldwin Universal test machine at room temperature and with a deflection rate
of C.0% in./min. Two repair panels were fatigue tested. Fatigue tests were
run in a 40 kip capacity hydraulic fatigue macine with a servo 1load
controller. The repair panel test data is summarized in Tables 24 and 25.

A photo of some of the failed specimens is shown in Figure 67,

Two control panels were tested in tension, one to obtain basic panel strength
and one with a 1 in. diameter hole. The first control panel was tested and
initially failed in the grip area. It developed a maximum gross stress of
65,000 psi. This panel was then repaired and necked down to a 3 in. width in
the test area. It failed at a lower gross stress of 50,948 psi in the necked
down region in the second test. A second control panel with a 1 in. diameter
hole was also tested. This panel developed a gross stress of 26,593 psi at
failure.

ranels with a 1 in., 2 in., and 3 in. hole were repaired by fusicn bonding.
Panels with 1 in. diameter holes were also repaired by adhesive bonding. The
panels with the fusion and adhesively bonded 1 in. diameter repaired holes
were static tested and achieved gross strengths equivalent to that attained in
the second test of the control panel. The panels with the 2 in. diameter
repairs attained static strengths that were 56 percent of ultimate and panels
with the 3 in. repaired holes attained strengths that were 42 percent of
ultimate. The net stress of these panels based on areas after the laminates
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Table 24. Repair Panel Static Tests'®/

AREA LOAD GROSS NET STRESS
PANEL (IN2) (LB) STRESS | (psI)
{Pst)
CONTRGL NO. 1 0.1635 8,330} 50,948 50,948
CONTROL NO. 2 (1-IN HOLE, NO REPAIR) 0.3276 8,830 26,593 32,343
1-IN HOLE REPAIR - FUSION 16,540 50,438 60,585
1-IN HOLE REPAIR - FUSION 17,100 52,197 62,636
2-IN HOLE REPAIR - FUSION 9,260 28,266 42,399
2IN HOLE REPAIR - FUSION 9,600 29,304 43,956
3N HGLE REPAIR - FUSION 7,420 22,649 45,298
3IN HOLE REPAIR - FUSION 6,720 20,512 41,024
1-IN HOLE REPAIR - BOND 17,250 52,655 63,186 -
1-IN HOLE REPAIR - BOND J 16,220 43,511 59,413
(@)FQUR PLIES OF FABRIC AT (0,90}

W)eIRST TEST FAILED IN GRIPS AT 66,000 PSI,
MACHINED TO 3 IN WIDTH FOR SECOND TEST

» wih by

Table 25. Repair Panel Fatigue Tests

o T

T

MAXIMUM
FATIGUE non. | MeANTALT- | sTRESS CYCLES :
SPECIMEN IN2 ’ (GROSS TO NOTES :
KIPS AREA) FAILURE :
> PSI N
B-1 .3282 300% 15,000 7,749,000 NO FAILURE -
e 390 20,000 3,823,000 NO FAILURE
i 2.60
- 492+ 26,000 2,779,000 NO FAILURE I
= 3.28
e B-1 591+ 30,000 106,700 | TEST FIXTURE FAILED, !
= 394 SPECIMEN BROKEN ~
- B-2 3245 583+ 30,000 5,847,000 NO FAILURE
= 3.89
= i

= [L>> 1-INCH HOLE REPAIR FYSION
FQUR PLIES OF FABRIC AT
(0,90
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had been stepped to accept the repair patches are approximately the same.

. They showed a significant improvement vhen compared to the net stress in the
control panel incorperating the 1 in, diameter hole. This improvement was

- developed in spite of the more severe boundary conditions on the panels with

7 the large holes by the constant 6 in. panel width.

Fanels with 1 in. hole repairs were fatigue tested. The fatigue tests were
run in a 40 kip capacity hydraulic fatigue machine with a servo load

S controller. Specimens were loaded with a sinusoidally varying load at an R =
0.2 and a frequency of 10 Hz. The first panel was tested at increasing
maximum strass levels until failure occurred. The panel finally attained 2.8
X 106 cycles at 25,000 psi gross stress which was well beyond the safe life
(4 lives) required for design., Hhen the next load level (30,900 psi) was
attempted the test fixture failed which caused the panel to break in bending.
The second panel was fatigued at a maximum stress level of 30,000 psi and
attained 5.8 x 10° cycles without failure.
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6.0 SUBCOMPONENT EVALUATION

A subcomponent test piogram was performsd to establish the data required to X
finalize the design of an AFRTP YC-14 outboard elevator. The tests in this é
program included static and fatigue rail shear tests, static and fatigue lap %
shear bond tests, mechanical attachme:t tests, shear buckling tests, compression

buckling tests, load introduction tests and fracture panel tests. A summary
of the tests performed is shown in Table 26.

6.1 IN-PLANE SHEAR TESTS

FRRet AL

To obtain in-plane graphite composite shear data, several rail shear specimen
configurations were tested (Figure 68). A1l of the specimens incorporated
laminates consisting of Gr/Ps fabric uriented at 1450 which was representative
of the construction anticipated for the elevator surfaces. Standard rail shear
specimens 3'in. x 6 in. were tested and develcped an average ultimate shear
stress cf 31,000 psi. Figure 69 shows a closeup of a typical rail shear static
test setup. Rail shear specimens were tested with the attachment areas
reinforced, and they showed an approximately 10 percent improvement. One
specimen was tested with the rails bonded in place to minimize the stress con-
centration due to the attachment and this one also showed some improvement. A
summary of the rail shear static tests is shown in Table 27. Photos of the
failed specimens are shown in Figures 70 through 72. The specimens attained
strength levels sufficient to show design compliance. The failure stresses
were 2 to 3 times greater than required for the YC-14 elevator design.
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An additional set of rail shear specimens was tested to obtain additional
strength, shear stiffness data and temperature effects. This data is also
included in Table 27 {Specs 11 through 14). These specimens tested slightly
higher than the initial bolted rail specimens. The specimens tested at 160°F
showed no significant drop in strength and only a slight drop in shear stiffness.

Rail shear specimens incorporating the same laminste design as the static
specimens were tested in fatique. The fatigue tests were conducted in a

Sonntag SF-10 fatigue test machine at a loading frequency of 30 Hz and a
R{minimum Toad/maximum Toad) of 0.05.

Yot g g,

Test specimens were clamped between
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Table 26. Subcomponent Tests
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TEST SPECIMEN 0. 9f
IN-PLANE SHEAR RAIL SHEAR 17
JOINT STRENGTH

FUSION BOND LAP SHEAR 24

ADHESIVE BOND LAP SHEAR 9

MECHANICAL ATTACH.| PULL OUT 13
SHEAR BUCKLING CANTILEVER BEAM 3
COMPRESSION BUCKL'G | SAIFF, COMPRESSION}
LOAD INTRODUCTION BOX BEAM 1
FRACTURE SLOTTED PANEL 3

l{‘”’l‘\l‘\;‘\

Table 27. Rail Shear Static Tests — 45 Graphite Fabric/P1700
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BOLTED RAILS
. BOLTED RAILS
BOLTED RAILS

BOLTED RAILS—~5/16" DIA. HOLE RT.

[

BOLTED RAILS—5/16" DIA. HOLE

. -——

R.T.
1600F
1600F

RT

35.430
31,880
33.430
33.400
33.700

TEST | MAX.SHEAR M?:)’:)E(QZS
TEMP STRESS 1o
4 STD. BOLTED RAILS R.T. 30.900
4 STD. BOLTED RAILS R.T. 31,100
8 DOUBLERS — BOLTED RAILS R.T. 33,000
8 DOUBLERS - BOLTED RAILS R.T. 35.400
4 BONDED RAILS RT. 35.600
a BOLTED RAILS R.T. 32520 40
4
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RAIL SHEAR SPECIMEN

L~ 4 PLIES OF
GR/PS FABRIC
{145)

SPECIMEN

TEST

TEST
TEMP

NO.OF
TEST

NO HOLE
NO HOLE
HOLE
HOLE
NO HOLE
NO HOLE

STATIC
FATIGUE
STATIC
FATIGUE
STATIC
FATIGUE

R.T.
R.T.
R.T.
].T.
160°F
160°F
TOTAL

NN O

Figure 68 I|n-Plane Shear
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Figure 70. Fajiled Rail Shear Specimens
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Figure 71. Failed Rail Shear Specimens — Doublers Banded in Attachment Areas
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rails which were attached to the test machine through spherical ball bearings
such that the load time was geometrically the same as used in the static rail
shear test fixtures. The upper end was connected to the fixed end of the test
machine through a strain gaged load cell to monitor test loads. The Tower end
was connected to the test machine loading platen, which applied mean and
alternating loads. An automatic control system continuously made adjustments
to maintain the proper load levels throughout the test duration.

Five rail shear specimens without holes were tested in fatigue. An endurance
1imit was attained at a maximum cyclic fatigue stress of 16,000 psi. A
summary of this data is shown in Figure 73. Two rail shear specimens with a
5/16-in. diameter hole in the center of the test section were tested in
fatigue. One was cycled to a maximum stress level of 23,000 psi and failed
after 71,000 cycles. This data point plotted slightly below the S-H curve is
shown in Figure 73. A second specimen with a hole in the test area was cycled
at a maximum stress of 16,000 psi. This specimen failed after 6 x 100

cycles. Typical failed static and fatigue rail shear specimens are shown in
Figure 74.

6.2 JOINT TESTS

Specimens were tested to obtain fusion bond, adhesive bond, and mechanical

attachment joint strength data. Lap shear specimens were tested to obtain
both static and fatigue properties.

6.2.1 Bonded Joints

= Several 'tap shear specimens were tested to obtain properties of adhesive and
fusion bonded joints. Both static and fatigue tests were performed.

ALt AR

Yol

A

The adhesive bond shear tests were performed using a 1 in. by 6 in. specimen

with a 0.5 inch overlap as shown in Figure 75. Fiberglass end tabs were
incorporated to facilitate gripping.
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Figure 73. Rail Shear Fatigue Data
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A series of tests was performed to obtain the shear strength of adhesives
cured using differ2nt process parameters. The specimens incorporated fabric
laminates oriented at (00,900). Some were made using room temperature curing
adhesive, Hysol EA934, that were processed with vacuum bag pressure and others
processed with spring-clamped pressure. The vacuum bagged specimens had an
average strength of 2,025 psi and the spring clamped specimens averaged 1,850
psi. These strengths are well above that required by design. A series of
specimens were also made that were bonded with Hysol 9628 adhesive. The
adhesive in these specimens was cured at 250%F and an autoclave pressure of
90 psi. These specimens were tested and ultimate shear strengths averaged
2,640 psi. A summary of the above test data is shown in Table 28.

Several additional lap shear specimens were tested to obtain the shear .
properties at temperatures covering the YC-14 elevator design temperature
range. These specimens were tested at -65°F, room temperature and 180°F.
They incorporated graphite fabric laminates oriented at 1450 to simulate the
most severe load transfer condition in the final design. Specimens were
bonded with AF126 adhesive cured at 250°F, with Hysol EA9628 adhesive cured
at 250°F and Hysol EA934 cured at room temperature. Several specimens were
also fabricated that were fusion bonded at 500°F and 100 psi. Figure 76
shows a cross-section of a typi:al fusion joint. A1l of the specimens tested
attained shear strengths above that required for design.

The data obtained from the above tests showed that the AF126 adhesive produced
the highest shear strengths. This adhesive is considered to be the most
flexible of the group tested and therefore best able to contend with the high
in-piane strains produced by the jﬁso laminates. The Hysol EA934 adhesive
cured at room temperature attained room temperature strengths averaging 1,060
Lsi which is more than sufficient to meet field repair design requirements.
The fusion bond specimens attained room temperature strengths of 1,210 psi and
retained the highest percentage of their room temperature strength at 180°F.
In general, all of the specimens tested developed strengths that would meet
design requirements. A summary of this test data is shown in Table 29.
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Table 29, Lap Shear Strength (psi) (4 Plies *+ 45 Fabric)

Adhesive cure Test temperature
temperature -65°F | R.T. 180°F

AF126 250°F 2,270 2,170 920
EA9628 250°F 1,500 1,290 580
EA934 R.T. 1,190 1,060 700

Fusion 500°F @ 1,640 1,210 860
100 psi
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Several lap shear specimens were fatigue tested. These specimens incorporated
graphite fabric laminates oriented at 1450 and were assembled by fusion
bonding. The specimens were fatigued in tension with a load ratio of

R = 0.05. Endurance limit attained was approximately 450 psi. This is well
above the 1imit load levels used in the thermoplastic elevator design. A
summary of the fatigue data is shown in Figure 77.

The rail shear specimens were fabricated with 0.3-in. wide fusion bond along
the center of their sections. Figure 78 shows the specimen cross-section.
These specimens were tested and attained shear strengths of 3,220 psi and
2,990 psi which are consistent with the strengths achieved with the lap
specimens. The failures occurred within the first ply of one of the specimen
halves.

6.2.2 Hechanical Attachment Joints

Several mechanical attachment joint specimens were fabricated and tested. A
summary of this data is shown in Figure 79. A1l of the specimens failed in
either a shear-out of tension mode or in the specimens with doublers in the
basic 1950 laminate. The specimens that incorporated jﬂso laminates at

the attachment (No.'s 1, 2, and 3) failed at higher loads than those with
(0%,90°) laminates (No.'s 4, 5, and 6). The specimens with doublers in the
attachment areas failed in the basic laminates and carried the highest ioads.
A photo of the failed specimens is shown in Figure 80.

Nine graphite-polysulfone to aluminum lap joint specimens fastened with

1/4-in bolts were tested to determine their fatigue lives and failure modes.

The nine specimens consisted of three groups of three each having different

laminate construction representative of various types that had a possibility

3 of being used in the elevator design. The first group incorporated 1450
laminates, the second (00,900) laminates and the third 45° laminates with a

. (00,900) doubler in the attachment area. The first two groups were attached
with standard head bolts and the third with countersunk bolts. Ail specimens
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were 1.50 inches wide and hz¢ a 0.50-inch edge margin (e/d = 2).
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Figure 79. Mechanical Attachment Joint Test Data
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The tests were performed at room temperature in a Sonntag SF-1 machine at a
frequency of 30 Hz. The initial Toad on all the specimens was equal to or
greater than the load expected under service concditions. A1l specimens were
tested at these load levels to at least 2.5 million cycles and then the load
was increased to higher levels to induce ~ lure. The fatigue loads, number
of cycles and types of failure for eackh < < .en are shown in Table 30. A
photo of the failed specimens is shown *  _ure 81.

As noted in Table 30, all of the spe. .iens sustained 2.5 million cycles at
service load Tevels and failed at loads significantly higher. The results
obtained from the mechanical attachment fatigue tests showed that this method
of load transfer can be used successfully with the types of construction to be
used in the elevator design.

6.3 SHEAR PANEL BUCKLING TESTS

Three graphite-polysulfone beams were fabricated and tested to obtain shear
buckling and fatigue data. The design of the shear panels in the beams was
representative of the spar webs in the elevator design. Each beam used a
different stiffener concept. The results obtained from all the tests showed
structural capabilities that were predictable and sufficient to meet elevator
design requirements.

The three beams were approximately 13 in. high and 24 in. iong. The beam
chords consisted of two angles made of 4 plies of graphite fabric oriented at
1950 and 16 plies at (0°,90%). The webs were made of 4 plies of fabric
oriented at jﬂso and were divided into 3 bays by stiffeners. Each beam had

a different stiffener design, one of which was a (00,900) ply tee stiffener,
one a (00,900) angle stiffener and the third a 1450 ply angle stiffener.
Figure 82 is a sketch describing the beam details.

Three shear buckling beams were fabricated. The beams were approximately 13
in. high and 24 in. long. The chords consist of two angles made of 4 plies of
graphite fabric oriented at i95° and 16 plies of fabric oriented at (O°.90°).
The webs were made of 4 plies of fabric oriented at 1450 and are divided into

3 bays by web stiffeners.




Table 30. Mechanical Attachment Fatigue Data
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SPECIMEN MAXIMUM | MEAN LOAD + NUMBER
SPECIMEN [ GONFiG- LOAD ALTERNATING OF TYPE OF
NO. URATION (LBS) (LBS) CYCLES FAILURE
FJ10 4Ply, 240 126 + 114 7,600,000 No failure
+45° 480 252 +228 42,000
FJn 360 189 + 171 2,661,000 No failure
480 252 +228 4,996,000 No failure
540 284 + 256 19000 |HP
FJ12 4 Ply, 420 220 + 200 2,500,000 No failure
+45° 480 252+ 228 74,000 4
FJ13 4 Ply, 240 126 + 114 7,126,000 No failure
0-90° 480 252 + 228 5,136,000 No failure
540 284 + 256 1202000 AP
FJ14 360 89+ 171 2,500,000 No failure
540 254 + 25% 100c B>
FJ15 APly, 420 220 + 200 7,710,000 No failuse
0.90° 540 284 + 756 ss000 @Y
FJ16 4Ply, 240 126 + 114 2.500,000 No failure
+45°
4Ply, 540 284 + 256 ss000 DY
0-90°
Doubler
FJ17 360 189 + 171 2,500,000 No failure
540 784 + 256 10,000
£J18 4Ply, 420 220 + 200 10,300,000 No failure
+45°
aply, 480 252 + 228 4,700,000 No failure
0-90°
Noubler 540 284 + 256 saro000 | DD
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The chord angle and cap details were assembled by fusion bonding. Figure 83
shows the chord details before and after assembly. Figure 84 shows all the
peam element details. Figure 85 shows a completed beam element assembly.

Static tests were conducted on all three graphite-polysulfone shear beams to
determine their buckling characteristics. Load introduction and reaction
plates were bolted to the test beams as shown in Figure 86. This assembly was
then installed in a test frame as shown in Figure 87. The base plate was
bolted to the bottom of the fixture and the load jack was attached to the load
introduction plate. The loads were applied in a horizontal piane.

The center panel of each beam was instrumented with two sets of back-to-back
strain gages. They were also instrumented with three deflection indicators to
obtain out-of-plane deflections. A fourth deflection indicator was used to

obtain load jack deflections. Figure 88 shows the location of the above
instrumentation.

A Moire' displacement study was also conducted on the center bay of the test
panels during loading. The stiffener side of the center bay was sprayed

with a coating of flat white paint to obtain greater shadow contrast. A high
frequency Moire' grid was mounted parallel to the webs and displaced from this
surface 1/8 inch. The grid was supported from the panel at three points to
permit it to follow the panel motion without imposing bending. The grid was
illuminated with a Xenon lamp. The test setup is shown schematically in
Figure 89 and a photograph of the actual setup is shown in Figure 87.

The Xenon light was directed to the panel surfaces by two mirrors which were
adjusted to obtain an angle of incidence of 60°. A 100 LPI linear amplitude
grid provided a sensitivity of 0.0058 in. out-of-plane displacement per
fringe order. The fringe patterns produced at the load increments were
photographed using a Hasselblad 500 EL camera and Kodak Tri-X film.

Each beam was loaded in 10 percent increments to an ultimate design load of
4,180 1b. The panels were unloaded and held at load increments at 60%, 40%,
and zero. Moire' fringe patterns as well as strain gage and lateral deflection
readings were recorded at each load increment. Figures 90 tnrough 92 show

some of the fringe patterns recorded on the panel with the tee stiffeners.
Figure 90 is a typical pattern of a center panel with zero load. Figure 91
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is a photograph of a typical pattern at 50% load and Figure 92 is a typical
pattern at 100% load. The lateral displacement profiles were developed for
each of the panels along a center panel diagonal using the Moire' fringe data.
Figure 93 shows the location of the diagonal on which the lateral displacement
was determined. Figure 94 shows a typical plot of the lateral displacement
developed from the Moire' fringe data.

The out-of-plane deflections of the center panels in the shear beams were also
obtained by electronic deflection indicators (Figure 88). A typical plot of
this data obtained from the beam with the 1450 laminate tee stiffeners is
shown in Figure 95. A buckling analysis of the beam shear web was also
performed using the STAGS-C computer program. Figure 95 shows a comparison of
the analytic prediction and the test data and demonstrates the excellent
capability for predicting structural response of graphite thermoplastic
structures.

The shear beam with the 1450 angle stiffeners was fatigue tested to
demonstrate design safe life compliance. Figure 96 shows the load spectrum
required to demonstrate a safe life of four life times. At the lower load
level (118 1b/in) the center panel was at buckling cnset as indicated by
Figure 91 showing the Moire' fringe pattern at the approximately same load
level. The beam was cycled at both required load levels for 106 cycles
winich was approximately 16 times greater than required to demonstrate safe
life requirements. The center panel of the beam visually buckled at every
cycle. The beam was then cycled at twice the design loads for 2 x 106

cycles without failure. A summary of this fatigue test is shown in Figure 96.
6.4 COMPRESSION PAMEL BUCKLING TESTS

Three graphite-polysulfone compression panels were fabricated and tested to
obtain compressinn buckling and fatigue data. Their details were
representative of the YC-14 elevator cover panels. The data obtained was used
to finalize the graphite-polysulfone elevator design and to demonstrate design
compliance.
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The three graphite-pelysulfone compression panels tested each incorporated a
different stiffener design. One consisted of 145° laminate tee, one

a :45° fabric laminate anagle and one a (0°,90°) fabric laminate angle. The
compression panels were 13 in. wide and 24 in. long. Stiffeners were
incorporated to stabilize the web. The stiffeners were 12 in. long thereby
&¢1lowing room for the edge support alcng the sides of the panels. Glass
epoxy pads were bonded at the ends of the panels to prevent brooming during
loading. Figure 97 shows the compression panel design details.

Static load tests were conducted on all three graphite-polysulfone compression
panels in a ten-kip capacity Ametek test machine, Steel channel edge
constraints were used to stabilize the edges of the panels.

The center bay of the panels were instrumented with back-to-back strain gages
to obtain panel buckling data and with deflection indicators to obtain
out-of-plane deflections. Figure 98 shows a schematic of the compression
panel test setup and the location of the panel instrumentation. In addition
to the above instrumentation, Moire' fringe data was obtained to develop
out-of-plane deflection data. The center bays of the compression panels were
sprayed with a flat white paint coating to obtain a distinctive shadow image.
A high frequency Moire' grid was mounted ilel to the webs by a three-point
support. The grid was illuminated with an Xenon Tamp. The 1ight was directed
to the panel surfaces by mirrors which were adjusted to obtain an incidence
angle of 60°. The 100 LPI Jinear amplitude grid provided a sensitivity of
0.0058 in. of out-of-plane displacement per fringe with a Hasselblad 500 EL
camera and Kedak Tri-X film, A photograph of the overall test setup is shown
in Figure 99. Figure 100 shows a panel from the back side. 1In this
photograph the steel channel edge ccnstraints can be seen bolted in place and
also the deflection indicators.

tach compressicn panel was lcaded in 10 percent increments to an ultimate
design load of 3,380 1b. Load, strain and deflection data was recorded at
each load increment. Photos of the Moire' fringe patterns were also taken at
each load increment., The three panels were loaded to ultimatz load without
difficulty. Onset buckling occurred at a very low load level (16 percent
ultimate) as predicted by the panel anaiysis. A typical Moire' fringe pattern
at 100 percent of ultimate load is shown in Figure 101. A typical lateral
deflection plot of the center bay is shown in Figure 102.
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The panel with the 1450 fabric laminate stiffeners was fatigue tested to
demonstrate safe life compliance of the graphite-polysulfone elevator design.
Figure 103 shows the load spectrum required to demonstrate a safe life of four
1ife times. At the lower fatigue ioad level (40 percent of the ultimate) the
center bay of the panel was well beyond on-set buckiing. The panel therefore
buckled during each of the fatigue cycles. It was successfully cycled for one
million cycles at each of the load levels specified in Figure 103 which was
several factors greater than required to demonstrate safe life comnliance. ]

6.5 FRACTURE PANEL TESTS

Three slotted panels were fabricated and tested to cpbtain fracture data. Two -
of the panels incorporated four plies of iABO fabric and the third, four
plies of (00,900) fabric. The panels were 6 in. wide and 16 in. long. The
panels incorporated slots that consisted of a 1/2 in. diameter hole with saw
cut extensions. The distance between the ends of the saw cuts was 1 in. The
slotted panel detailis are shown in Figure 104.

P L A N

T
e it

The panels were tested in tension. The panel with the (00,900) fabric laminate
failed at the same gross stress level attained with the control specimen i
incorporating a 1 in. diameter hole (section 3). The two panels with the

jﬂso laminates failed at gross stress levels of 15,628 psi and 17,155 psi.

A summary of the fracture panel test data is shown in Table 31. A photo of

the failed panels is shown in Figure 105.

Jii [ A

VA

The data from the panels with the 1450 taminates is shown plotted with
equivalent graphite-epoxy panel data in Figure 106. As shown, the residual
strength of the damaged graphite-polysulfone fabric panels are equivalent to
the graphite-epoxy panels and well above the 1imit strain used in design.

SRR

-

6.6 LOAD INTRODUCTION TESTS

A load introduction test element was designed, fabricated, and tested. Its
configuration was representative of load introduced by a fitting in the
AFRTP-YC-14 elevator box design. It incorporated front and rear spars which
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Figure 103. Compression Panel Fatigue
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Table 31. Fracture Panel Tests

Panel Fabric Failure Gross
laminate load (Ib) stress
(deg) (psi)
No. 1 (0-90) 8,140 24 847
No. 2 +45 5,120 15,628
No.3 +45 5,620 17,155
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included graphite-polysulfone webs made of fabric oriented at +450, The
spar chords were "Tees" made of fabric oriented at (0,90). The spars were
connected by top and bottom covers made from 4 plies of fabric (+45). The box
was 16.0 in. long and 10 in. long, 10 in. wide and 8.0 in. high. A typical
rib was installed in the center of the box tn distribute fitting loads. A
drawing showing all the design details is shown in Figure 107. The 1
introduction box element was fabricated using the same detail fabrication and
assembly procedures that were wused in the full-scale demonstration

2>

rad

[4

components. The assembly was accomplished using fusion, adhesive bonding, and
mechanical attachments. After the box fabrication was completed, an aluminum
fitting was installed at the rib location at the center of the box.

Both static and fatigue tests were performed on the test element. The box was
bolted to metal plates at its ends. The edges of the end plates were mounted
at the angle required to introduce the fitting loads at the desired angle.

Two static tests were conducted in a test machine using the fixtures depicted
in Figures 108 and 1309. The fixtures were designed to positicn the box
element so that a single actuater could apply the resultant of the desired
load components in the forward-aft a d up-down directions. Loads were applied
by a hydraulic actuator and controlled by an MTS, Mode! 436 servoc controlier.
A load cell was connected between the actuator and the load Tink to measure
applied load. Photographs of the above test set-ups are shown in Figures 110,
111, and 112. A third static side load was also applied. The test box and
side plates were placed in a 10 Kip capacity Tinius Olsen test machine and a
side load was applied to the fitting lug by a load rod extending through a
hole in the side plate as shown in Figure 113.

The fatigue testing was accomplished in the 90 in. machine using the same
set-up as the second static test Figure (109), except that a MTS Model 430 was
used to indicate the maximum and minimum peak loads.

In the first static test, an ultimate fitting load of 9,602 1b was applied.
This resultant loading was equivalent to a 200-1b component into the box in
the aft direction and 9,600 1b component in the down direction relative to the
box. Loads were applied in 10 percent increments. The load introduction box
accepted the ultimate fitting load without any difficulty.
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Load Introduction Box —Test Set-Up

157

LR Sl 4

B
=




e % . TIPS R

P e s i e

M3IA BpIS df)-18S 1S3 — X0g U0I3INPoLIUf PEOT “Z) | 84nbl4 MBIA 0. 'df)-18S 158 — XOg UOIIINPOIIU| POT [ [ [ &NCio

e

e prmaml,
Nw,%gi‘ -




dmas 153 peoq apiS * £ “oN 1581 IS ‘€L L anbly

LLLLLL L L L L L LLLLLLLLLLLLL L LLLLL L LLL LN E
L B ! N
+ + + + +

+ + + + + + ¥ A

H30VdS

159

Q
Z
E
Ww
5
®
1

JHALINYLS :
X08 1s34% ond

+ + + + ¥+ + ¥ + + + +

[ ) ] w ,w
_ 1 ,\ T ) )

31vd mo_ml\ |.\ » * j
00Y Qv01

'S87 096 =
avon 3dis

n




After the successful initial static test the box was repositioned (Figure 109)
and a second ultimate static loading condition was applied. Load was applied
in 10 percent increments to a maximum load of 9,462 1b., This Toad was
equivalent to components of 5,500 1b into the bex in the aft direction and
7,700 1b in the up direction,

The third static test was an ultimate side load condition. A maximum load of
960 1b was successfuily applied to the side of the lug fitting.

A fatigue test was performed in which 120,900 load cycles were applied with a
maximum load equal to 42% of the second ultimate static load condition. This :
was equivalent to four life cycles at the maximum load in each ground-air-
ground load spectrum. The load was varied sinusoidally between 3,974 1b

and 200 1b at a frequency of 5 Hz. The fatique test was successfully completed

P e e i e et

without damage to the box.
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7.0 YC-14 ELEVATOR FULL-SCALE DESIGN AND FABRICATION

Three graphite thermoplastic YC-14 outboard elevator designs were developed
and evaluated and one was selected for further development. The three
concepts were a currugated stiffened concept., a stabilizer honeycomb concept
and a "Z" stiffened concept. A1l of the concepts were designed using the same
requirements and criteria that was for the existing flight hardware.

7.1 DESIGN REQUIREMENTS AND CRITERIA

The composite outboard elevators were designed to be a direct replacement of
the existing aluminum outboard elevater on the YC-14. They were developed to
utilize existing metal hinges, actuator and reaction links. The composite
elevator design envelopes matched the external mold line surfaces of the
aluminum design. The basic elevator structures consisted of a two-spar box
similar to the aluminum design.

Design Loads

The GRTP elevators were designed for the same ultimate load conditions as the
YC-14 outboard elevator 2luminum design.

Ultimate Load Factor

The ultimate loads were based on an ultimate factor of safety of 1.50 applied
to the limit loads.

Fitting Factors

The fitting factors used on the aluminum design were used to ensure durabilit;

and rigidity. The factors were applied to the internal limit structural loads
obtained by analysis for both normal and fail-safe flight conditions.
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Fajl-Safe Requirements

The GRTP designs were capable of carrying limit loads with the following hinge
failures occurring independently (same as aluminum design):

F/S Condition Failed Hinge Station
1 115
i 143
3 171
4 215
5 265

Temperatures

The tamperature range criteria for the composite designs was -650F to
1600F,

Design Service Life

The design service life goal of the composite designs was the same as the C-14
(production) aluminum design:

YC-14 C-14
Cumulative flight hours 1,000 30,000
Total number of landings 2,000 17,000
Total service life years 10 20

The composite elevators were designed to have an operational Tife to exceed
the design service 1life per MIL-STD-1530 and MIL-A-8866(A). The objective of
the Design Service Life requirement was to minimize potential cracking

problems that could reduce the functional cepability or increase the
operational cost of the elevator.
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Flutter

The GRTP elevators had equal or greater flutter margins than the aluminum
design. In order to satisfy this criterion, the unbuckled box torsional
stiffness (GJ) Yistribution was equal to or higher than the aluminum desig .

Control System Effectiveness

Control system effectiveness was maintained by providing equivalent local
stiffnesses in the actuator load loop structural elements.

Permanent Deformations

The composite Tlaminate layups were configured so that no signifcant ply

yielding would occur due to transverse and/or shear ply strains under applied

Timit elevator loads. For +450 laminates, the maximum strain in the 00 or
900 directions shall be 2,000 microstrain at limit Toad.

Spar Webs

Spar webs of other than stiffened monocoque construction were designed lo be
buckle resistant. Intermediate elastic buckling of stiffened monocoque
laminate webs was allowed. The maximum ratio of applied-to-cr -ical shear
buckling loads was 5.0. The strength of the critical web panel was
established by nonlinear deflection analysis using a maximm ply strain
failure criterion. The web strength analysis was substantiated by shear web
subcomponent testing.

Cover Panels
A1l cover panels were designed to be buckle resistant or intermediate elastic

buckle design. The cover panel strength analysis was substantiated by
subcomponent testing.
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Rib_and Actuator Beams

A1l ribs and actuator beams were designed to be buckle resistant.

Design Allowables

Design data and properties for GRTP composites were determined from test data
for the materials, processes, and composite configurations used in the
elevator. Joint design allowables were based on element test data. HNominal
ply dimensions were used for analytical calculaticns to substantiate structural
integrity.

Damage Tolerance

The materials, design concepts and stress levels for the composite design were
selected so that the probability of failure of the component is minimized due
to the propagation of undetected or inservice inflicted damage. These damage
tolerance requirements were achieved (1) through the use of fail-safe design
in the case of a hinge failure, (2) by designing to strain levels at limit
load that are below critical flaw growth levels, and (3) by requiring that

damage caused by impact with small debris or hail would not reduce the strength
below limit load requirements.

Corrosion

Aluminum fittings would be de-coupled from the GRTP elevator materials by two
coats of corrosion resistant primer. Special consideration would be given to

the fitting connection fasteners with respect to material selection and wet-
primed installation.

Panel Sizing

The cover panels and spar webs were sized to provide torsional siiffness (6J)
greater than the aluminum design at reduced structural weight. For a design
goal target, the GJ distribution for the YC-14 graphite-epoxy elevator shown
in Figure 114 was adopted. The Ely and EI; distributions Yor the graphite-
thermoplastics designs are shown in Figure 115. These distributions
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are lower than the current aluminum design. The combined EI, GJ distribution
shown for the composite design are known to provide flutter margins in excess
c¢f the design criteria requirements.

The cover panels and spar webs were also sized to ensure integrity at ultimate
design loads. Classical orthotropic panel analysis methods were used to
determine critical general and local instability lvads. The stiffened
monocoque panel concept allowed intermediate buckling as stated in the design
criteria.

Fatigue and Fracture

A study of the YC-14/C-14 GRTP elevator component designs indicated they would
meet service life requirements. The elevator skin and spar webs were designed
to a stiffness requirement resulting in low laminate operating stresses. Limit
strains fer the basic skin laminates were about 2,000 in./in. due to axial

and torsional loading. In order to assess the general fatigue behavior of the
skin laminaies, available data from the Advanced Composites Design Guide was
reduced as shown in Figure 116. The reduced data does not include
thermoplastic laminate data but initial studies and element tests have shown
equivalent fatigue response for GRTP laminates.

As shewn in the above figure all the laminates presented, including those
containing holes, did not fail at maximum peak Strain values below 4,000 m
in./in. The typical maximum fatigue load anticipated in each flight is
expectad to be only about one-half of limit load with only small load reversal
resulting from take-off rotation. Tne maximum skin strain will be considerably
below the fatigue 1imit. The laminates shown did not include the all 1950
tayup used in the preliminary design but did include testing of +45/90
laminates which would be expected to have similar performance. It is
anticipated from this comparison that the basic laminates will have sufficient
fatigue margin.

The preliminary GRTP design concepts with 1950 laminate skins surpass the
reqguirements for in-service damage tolerance. Fracture data developed in the
element tests (Section 6.0) substantiated this capability.
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7.2 PRELIMINARY DESIGN

Three YC-14 outboard elevator preliminary conceptual designs incorporating
graphite thermoplastic materials were evaluated. The evaluation considered
weight, cost, inspectability and repairability. As a result, one of the
concepts was selected Vor further design refinement and hardware evaluation.

The laminate thicknesses and ply orientations in all three designs were
selected to be as close to the existing aluminum design as practical. The
YC-14 elevator is subjected to bending induced by loads from the horizontal
stabilizer through the interfacing multi-hinge attachment. The induced
bending loads can be minimized by reducing the elevator EI stiffness to an
acceptable Tower limit. In the design of the ply orientations a major

-A{‘., . N

Bk

consideration was the high torsionai stiffness reauired because the elevator
is actuated at the inboard end only; both the reduced bending stiffness and
high torsional stiffness resulted from the use of jﬁSo plies in both the cover

A VA DY 3

panels and spar webs. Figures 114 and 115 show a comparison of the bending and
torsional stiffnesses between the composite designs and the existing aluminum
design.

A detailed SAMECS finite element computer model has been built for internal
loads analysis. A total of 16 flight maneuver and ground load cases were

i J—
et b 3y el BT AR

evaluated. Analysis results indicate the composite designs have cover panel
and spar web ultimate shear load capabilities within 4 percent ¢f the aluminum
elevator loads. Torsionally, the composite design is considerably stiffer,
showing 30 percent iess windup than the aluminum design.

Figure 117 shows locations of hinge and actuator fittings and envelooe control
dimensions. These dimensions and locations were maintained throughout the
program to assure interchangeability of GRTP and aluminum elevators.

7.2.0 "7" Stiffened Panel Concept

8 graphite-polysulfone YC-14 elevator design was developed incorporating a
panel concept with chordwise stiffeners. The details of this des.jn are shown
in Figure 118, The covers and spar webs used graphite fabric oriented at
jﬂSo to provide good torsional stiffness. Panel stability was provided by
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stiffeners installed by fusion bonding. Ribs, which also use graphite fabric
oriented at 1450 were installed at each of the hinge locations. Some flanges
on both the ribs and spars were post-formed as an integral part of these
details. In most cases additional angle details were added by fusion

bonding to provide a means for controlling assembly toferances. Fusion
bonding was used wherever practical for detail installation and component
assembly. Mechanical fastening was held to a minimum and used primarily for
close-out of the elevator box.

7.2.2 Corrugated Stiffened Panel Concept

The design shcyn in Figure 119 utilized a corrugated stiffened panel concept.
The top and bottom covers, and the front and rear spar webs were designed with
graphite fabric oriented at 1450 to provide good torsional stiffness. These
laminates were then stiffened with corrugated panels made of graphite fabric.
The corrugated panels were fusion bonded to the flat lamination. Ribs, which
were also made of graphite fabric oriented at 1450 were installed at each of
the hinge locations. The flanges on both the ribs and the spars were post
formed and were made as an integral part of the spar and cap details. The
overall elevator was assembled by mechanical attachments.

7.2.3 Honeycomb Stiffened Cover Panel Concept

A design was developed that incorporated a honeycomb stiffened cover panel
concept. This design was based on a 8 ft long graphite-epoxy YC-14 elevator
component that had been fabricated and tested. The component tests
demonstrated complete design compliance. This comporent demonstrated a safe
1ife capability (4 factors) in which two of the 1ife cycles were performed

with 2 in, long saw cuts in both the covers and spar webs. After the fatigue
cycling was compieted the component was tested to failure. Failure occurred

at 60 percent above design ultimate. Figure 120 shows the portion of the
elevator that was used for the graphite-epoxy elevator test component and the
structural concept that was incorporated. Because of the excellent performance
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of this component, a graphite-themmoplastic design was developed based on the
same concept. Figure 121 shows the details of this design. The top and
bottom covers have graphite fabric polysulfone skins stabilized with Nomex
honeycomb. The spars and ribs utilize graphite fabric/polysulfone laminates
oriented at +450, Stiffening is not required for these elements. The rear
spar and the covers were assembled by fusion bonding. The front spar and
hinge fittings were installed with mechanical attachments.

7.2.4 Preliminary Design Study Results

Three preliminary designs of a graphite thermoplastic YC-14 elevator were
developed as descrited above. The three concepts were evaiuated and the
stiffener stabilized panel concept was selected for further evaluation.

Weights of the three designs were established. It was determined that all
three concepts weighed within a few percentage points of each other. This
study also showed that all three composite designs were approximately 25
percent Tichter than the existing YC-14 aluminum elevator design.

A study was also performed to determine the costs for producing the three
composite designs. Costs were based on the procedures described in Section
3.0. Costs were determined for the first unit production and then using an 85
percent learning curve for the 10th and 100th unit production. A summary of
this data is shown in Table 32. These results show that for the first unit
production the honeycomb design is the least costly, the "Z" stiffened next,
and che currugated design most costly. By the 10th unit production the
honeycomb coacept remains the least costly, the positions of the following two
were reversed. The "Z" stiffened concept has the highest cost because it has
the greatest number of details. These costs could have been reduced by
simplifying the stiffener geometry and by using integral rib flanges to reduce
the number of parts. Using these techniques, most of the 19 nercent cost
difference (10 unit) could be elminated. The Z-stiffened is more applicable
to other aircraft components than the other two concepts thereby permitting
wider dissemination of the technology developed in this program. The data
generated ia this study indicated that all three concepts could be fahricated
for approximately 25 percent less cost than the existing aluminum design.
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Table 32. Cost Summary — Graphite/Polysulfone YC-14 Elevator

UNIT PRODUCTION MATERIAL TOOLING | TOTAL COST
HOURS DOLLARS HOURS DOLLARS
HONEYCOMB
1 1,087 1,654 2,075
10 2,735 16,540 2,075
100 47,560 165,400 2,075
CORRUGATED
1 1,185 1,600 2,870
10 8,432 16,000 2,870
100 51,048 160,000 2,870
#2* STIFFENED
1 1,468 1,650 2,106
10 10,446 16,500 2,106
100 64,230 165,000 2,106
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Additional areas that were considered and evaluated prior to selecting a
concept for further evaluation were inspectability and repairability. The
stiffener stabilized panel concept scored highest in these areas. Both the
honeycomb and corrugated designs incorporate areas that have restricted
accessibility and were therefore more difficult to inspect. The stiffener
concept resembles present metal construction and therefore would more likely
lend itself to established repair procedures,

As a result of the preliminary design study, the stiffener stabilized panel
concept was selected for further design refinement and hardware evaluation,
The manufacturing techniques required for producing this concept were
applicable to the uther two. Techniques and processes in areas of
consolidation, post-forming, bonding, and machanical assembly would be
applicable for all three. This concept was not the most cost effective of the
concepts studied but it still represented a significant cost saving when
compared to the existing aluminum design. This design has greater
accessibility and therefore is easier to inspect. The configuration of the
stiffener stabilized panel concept closely resembles commonly used metal
designs and therefore its development would be more applicable to aircraft
design.

7.3 DETAI. DESIGN AND ANALYSIS

A final design of a graphite-polysulfone YC-14 outboard elevato: was

prepared. It was based on a stiffener stabilized concept as a result of tne
conclusions reached in the preliminary decign studies. The elevator component
was designed to be a direct replacement for the existing YC-14 aluminum
eievator, Design drawings were sufficiently detailed to supply all the
manufacturing information required to fabricate the elevator component.

The composite design was analyzed to show that all design requirements were
met. A finite element model of the elevator was prepared. A Structural
Analysis Method for Evaluation of Complex Structures (SAMECS) computer program
utilized this model to establish the structural stiffnesses and internal
loads. These loads were used for performing detail stress analysis.
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7.3.1 Design

The Gr/Ps YC-14 elevator was designed to be a direct replacement for the
existing aluminum design. Its reaction Tink, actuator and rib hinge fitting
stations were the same. It incorporated two splices at locations shown in
Figure 122 to accommodate available facilities. It had the same envelope, spar
and cover locations as the existing design. The composite design also provided
the same clearances and offsets required to permit the installation of the

.
‘ WL
R T TNt PO R A AT | T £

——
W

I

adjacent fairings (Figure 123). Its torsional and bending stiffnesses closely %
matched existing aluminum design. %
Design drawings were prepared in sufficient detail to supply the manufacturing %
information required to build the composite elevator. These drawings are §
shown in Figure 124 through 129, %

i

A design study was made of the different thermal growth between the composite
elevator and adjacent structures and the associated adjustments required in
design, It was determined that for the maximum spread in design temperatures
(-65o to 160°F) the differential growth between the composite elevator and
interfacing aluminum structure would be 0.72 in. Two fitting designs had been
developed on other programs which permitted the required differential
movements. These fittings had been mocked-up as paft of their evaluation and

both were found functionally acceptable. The design selected for the AFRTP
elevator is shown in Figure 130.

vy,

o

SRR S

I T N
s
FAALH

7.3.2 Analysis

A "SAMECS" finite element model of the YC-14 graphite-polysulfonc elevator box
was developed and used to determine deflections and internal loads for use in
designing the box. Figure 131 shows a plot of the model, which contains 565
nodes, 623 plates, 634 beams, and 32 load cases. Every rib and stiffener in
the elevator box had been included in the finite-element model. The load
cases considered include air pressure loads, actuator loads and imposed
deflections at hinge points due to stabilizer deflection. The internal loads
developed from the "SAMECS" analysis were used to check the buckling strength
of the upper and lower surface skins and the spar webs using the "STAGS-C"
finite-difference buckling analysis program, The finite-element model was
also used in determining the abitity of the desian to attain ultimate load
conditions.
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8.0 FULL-SCALE ELEVATOR TOOLING AND FABRICATION

Three full-scale GRTP YC-14 elevators were fabricated. They were assembled in
three sections tc accommodate available facilities and present technology.
The assembly splice locations are shown in Figure 122. The materials were
initially compacted, cut and formed into details and then assembled into
subassemblies. These were built into the three major assemblies as summarized
in Figure 132. These were then spliced together to form the completed
elevators.

8.1 ELEVATOR DETAIL FABRICATION

Front and rear spar stiffeners were molded using match die tooling. A
four-ply pre-mold material was placed in a die which was then put in a press.
This assembly was heated to 6500F and held at 200 psi for 15 minutes. The
dies were than removed from the hot press and placed in a cold 'press until
parts cooled below 2500F, Figure 133 shows molded stiffener details on the
left and pre-mold layup in the die on the right.

Rib details were also molded using match die tooling. The male tool was
machined from plate and the die cover was formed in a hydropress. Figure 134
shows the rib tooling and a completed rib. The rib materials, four plies of

fabric at +450; was pre-formed in a press at 6000F and 200 psi. The
pre-compacted ribs were then bagged and heated in an autoclave to 6000F for
30 minutes at 200 psi to complete tneir fabrication.

8.2 SUBASSEMBLY FABRICATION

The lower chords and skins were assembled by fusion bonding and the balance
of the eievator subassemblies were assembled by adhesive bonding. The
adhesive used was Hysol 9628 which was cured in an autoclave at 2500F and 50
psi. Figure 135 shows some of the rib and chord details and two of the lower
skin subassemblies prior to being trimmed. Figure 136 shows some of the front
and ~ear spar webs with their stifferess bonded in place.
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A fusion tool wac designed to assemble the spar chords and doublers to the
bottom covers by fusion bonding. This tool was made to assembie the three
different size cover sections along the length of the elevator. This was
accomplished by relocating one set of chord pressure bars as reguired to
produce the various size panels.

The bottom fusion panel assembiies werz made using precompacted materials and
"Tee" details that were either made of pre-formed material or pre-compacted
sections. The skin and doublers were cut from autoclave pre-conipacted sheet
stock. The initial panels usaed pre-formed "Tees" that were compacted during
the fusion assembly cycle. The later panels incorporated pre-compacted “"Tees"
during assembly which prcduced improved components.

Prior to the fusion assembly cycle, the tools and parts were cleaned. The
details were then placed in the fusion assembly tool. Figure 137 shows the
details in the tcol prior to the installation of the chord pressure bars.
Figure 138 shows the fusion tool with the chord pressure bars in place. This
assembly was then bagged, as shown in Figure 139, placed in an autoclave and
processed through a fusion cycle of 30 minutes at 8000F and 200 psi. The
assembly was then cooled and the assembly removed form the tool. Figure 140
shows a completed bottom panel fusion assembly.

8.3 ELEVATOR ASSEMBLY TOOLING AND FABRICATICN

Two tools were fabricated to assemble the elevator sections. One tool was
used for the more complex large section and the second tool was first used for
the assembly of the middie section and ther readjusted to hold the details for
the assembly of the smaller end section of the elevator. These tools were
primarily used to locate the details and provide pressure during the adhesive
bonding. Figure 141 and 142 show two views of the large section tooling.
Fiqure 143 shows a view of the middle and small section assembly. The lower
cover assembly was initially located in the tool. The ribs were then locked
in their proper locations after placing film adhesive at the bond interfaces
(Figure 144). Rubber pads backed with metal bars were then used to distribute
the bonding pressure provided by torqued set screws. This assembly was then
placed in an oven and processed through the adhesive 2500F cure cycle.
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Figure i41. YC-14 Elevator Large Sec
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Figure 144. Details Placed in Assembly Fixture
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The spar webs were instalied using pressure plates and reaction frames (Figure
145). Upper chords were then placed in their locations with adhesive (Hyso1
9628) and held in place with "C" clamps and pressure bars. These assemblies
were then placed in an oven and processed through the 250°F adhesive cure.
Figure 146 shows a typical elevator section subassembly after the ribs and
spar webs and chords have been bonded. The three elevator sub-sections were
then assembled with mechanical attachments and Hysol 934 rcom temperature
curing adhesive as shown in Figure 147a. The elevator covers were then
installed with mechanical attachments or a room temperature curing adhesive
(EA 934). The first two test elevators assembled used Visu-Lok blind
fasteners for installing covers in the two smaller sections and nut plates
and bolts in the larger sections. Figure 148 shows a cross-section through
a typical blind fastener installation. The covers on the third elevator
assembly were all installed with nut plates. Figure 147b shows a completed
graphite thermoplastic YC-14 elevator assembly.
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9.0 DEMONSTRATION ARTICLE TESTING ]

Static and fatigue load testing were completad on three graphite/thermoplastic H
YC-14 elevator boxes.

M B AR L] T Aon |

The first two elevator boxes were fabricated per drawing 180-56561. Following
fabrication, the boxes were instrumented with strain gages as indicated in
Figures 149 and 150. Rosettes #7 and #8 were not installed as originally ;
intended because of interference with cover reinforcements. On Box #2, the
interior Jgages were omitted because some of the cover fasteners were cemented
in and could not be removed at the time of strain gage installation. The
elevator boxes were also instrumented with electronic deflection indicators

(EDI), and load cells to measure loads applied at 4 load points as illustrated
in Figure 151,

The elevator boxes were tested in fixtures fabricated and assembled per

drawing SK2-5611-0-243, and illustrated in Figure 152. Loads were applied by
serve controlled hydraulic actuators at 4 loading points as noted, and reacted
at two lug fittings at the outboard end and one at the centroid of the inboard

v ey e
T T A T A N e B st R Ea s R0t 73 52 VAR 8 £ 47

end. A1l loading and reaction points were equijped with self aligning
sphevical ball bushings to allow for twisting and bending of the test

article. Test loads were programmed a2nd the hydraulic actuators controlled by
the ELCADS system, which also providzd signal conditioning, recording and
tabular printout of strain, deflection and load data. Photos of the test
system are shown in Figures 153 to 156.

W Lt bttt v
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The test loading conditions and sequence are tabulated in Figures 157 to 161.

Elevator Box #1 was subjected to a bending test, with loading to 80% of D.L.L.
as noted in Figure 157, followed by a torsion test to 100% D.L.L. as outlined
on Figure 157. During the torsion test, stiffeners on the inner side of the
lower cover at Sta. 197 and 205, were disbonded. Due to the stiffener bond
failure, the test director elected to bond stiffeners on the outside of the
lower cover and proceed with the fatigue test as originaily intended. The
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APPLIED LOAD - POUNDS

TEST % D.L.L.

LP.1 LP2 LP3 L.P.4

Box No. 1 0 0 1] 0 0
Test 1.1 20 -i70 63 1250 +93
Static Bending 40 -340 -126 +501 +186
60 S11 -189 +752 4278

80 -681 252 +1003 +3M1

60 S11 -189 4752 4278

40 -340 -126 4501 +136

20 -170 63 +250 +3

0 0 0 0 0
Box No. 1 0 4 0 0 0
Test 1.2A 20 +800 -800 -250 4250
Static Torsion 40 +1600 -1600 -500 +500
60 +2400 -2400 750 +750
80 +3200 -3200 -1000 +1000
1 |2 (] 0 0 0 )
Box No. 1 0 0 0 0 1]
Test 1.28B 20 +800 -800 -250 +250
Static Torsion 40 +1600 -1600 -500 +500
60 42400 -2400 750 +750
80 43200 -3200 -1000 +1000
100 +4000 -4000 -1250 +1250
80 43200 -3200 -1000 +1000
50 42400 -2400 750 +750
40 +1600 -1600 500 +500
20 4800 -800 259 +250
0 0 0 0 0

B> Aborted test after 80% foad due to insufficient actuator stroke @ LP. No. 4.
Repositioned actuator and repeated as test 12.B.

Apoplied & foads simultaneously in 20% increments in 10 seconds. Held load at
each increment for data recording. Tension = +, compr = -.

Figure 157. Test - Loading Schedule, Graphite Thermoplastic YC-14 Elevator Box Test
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Static Torsion

Box No. 1
3rd Lifetime Fatigue

Box No. 1

Test 1.6

Post Fatigue Life 3
Static Torsion

REPEAT AS PER 1st LIFETIME

REPEAT AS PER TEST 1.4

!
APPLIED LOAD - POUNDS
TEST L
T L.P.1 LP.2 LP.3 LP.4
Box No. 1 @® 0 0 0 0 0
Test 1.3 17 + 662 - 862 -206 +206
Pre-Favigue 34 +1324 -1324 -412 +412
Static Torsion 51 +1985 -1986 -618 +18
67 +2649 -2649 -824 +824
0 0 0 0 0
Box No. 1
1st Lifetime Fatigue
“A’” Amplitude, MIN 3 + 132 - 132 - 41 + 41
cycle 1thru786 MAX 67 +2649 -2649 -824 +824
“8'" Amplitude, MIN 2 + 94 - 94 -29 + 29
cycle 76 thru 200 MAX 46 +1876 -1876 577 +577
Repeat “A"” & “B" 150 X
=1 L.T. = 30,000 cycles
Box No. 1 0 0 0 0 0
Test 1.4 17 + 662 - 662 -206 +206
Post Fatigue Life 1 34 +1324 -1324 412 +412
Static Torsion 51 +1986 -1986 -618 +618
67 +2649 -2649 -824 +824
] 0 0 0 0
Box No. 1
2nd Lifetime Fatigue REPEAT AS PER 1st LIFETIME
Box No. 1
Test 1.5
Post Fatigue Life 2 REPEAT ASPER TEST 1.4

} Lower cover stiffeners ® STA 197 and 205 disbonded during test 1.2B.
Exterior tee stiffeners bonded on prior to fatigue test start.

Figure 158. Test - Loading Schedule Graphite Thermoplastic YC-14 Elevator Box Test
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APPLIED LOAD - POUNDS
TEST % D.L.L

LP.1 L.P.2 L.P.3 LP4
Box No. 1
4th Lifetime Fatigue REPEAT AS PER 1st LIFETIME
Box No. 1 )
Test 1.7
Post Fatigue | ife 4 REPEAT AS PER TEST 1.4 .
3ox No. 1 B 0 0 o 0 0
Test 1.8 20 +663 -850 49 +324 ;
Static Combined Bending 40 +1326 -1700 99 +648
and Torsion 80 +1989 -2551 -148 4973
80 42652 -3402 -198 +1297 :
100 +3315 -4252 247 +1621
110 +3646 -4677 272 +1783 2
120 +3978 -5102 -296 +1945
130 +4310 5527 -321 +2107
414 0 0 0 0 0 1

Box No. 1 0 c 0 0 ¢

Test 1.9 20 +663 -850 -49 +324 5
Static Com':-nzd Bending 40 +1326 -1700 .99 +648 :
and Torsion - =ailure 60 +1989 -2551 -148 +973 i
80 +2652 -3402 -198 +1297 2
100 +3315 -4252 -247 +1621 1
110 +3646 -4677 .272 +1783 .
120 +3978 -5102 -296 +1945 :

130 +4310 5527 -321 +2107

140 +4641 -5953 -246 +2269

150 +4972 6378 -374 +2432

Continuous
0
Failure

B ’ Tee stiffeners at STA 197 and 205 were poorly bonded and were replaced with
aluminum angles attached with blind rivets prior to static test 1.8.

4 n’ Aborted test after 130% load due to insufficient actuator stroke at L.P. No. 3.
5 Repositioned actuator and repeated test as 1.9,

Figure 159. Test -Loading Schedule Graphite Thermoplastic YC-14 Elevator Box Test
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% APPLIED LOAD - POUNDS
TEST D.LL
T LP.A LP.2 LP3 LP.4
Box No, 2 ] 0 0 0 0
Test 2.1 20 -170 63 +250 +93
Static Bending 40 -340 126 +501 +186
60 511 -189 +752 +278
80 -681 -252 +1003 +371
60 511 -189 +752 +278
40 -340 -126 +501 +186
20 -170 63 +250 +93
0 0 -0 c 0
Box No. 2 0 0 0 0 0
Test 2.2A 20 +800 -800 -250 +250
Stavic Torsion 40 +1600 -1600 -500 +500
60 42400 -2400 -750 +750
80 +3200 -3200 -1000 +1000
By 100 +4000 -4000 -1250 +1250
Box No. 2 a» 0 (] 0 0 0
Test 2.3 20 +663 -850 -49 +324
Static Combined Bend- 40 +1326 -1700 -99 +648
ing and Torsion to 60 +1989 -2551 -148 +973
failure 80 +2652 -3402 -198 +1297
100 +3315 4252 -247 +1621
By 10 +3646 -4677 -272 +1783

ﬂ) At approximately 95% of D.L.L., the lower skin/lower front spare chord bond

failed from STA 279 to 313-

[ Prior to test 2.3, the failure per [JP was repaired by bonding and installation

of blind fasteners.

) At approximately 106% of D.L.L., the front spar web/chord tee hond failed
from outbd spiice to the outbd end.

Figure 160. Test - Loading Schedule Graphite Thermoplastic YC-1« Elevator Box Test
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APPLIED LOAD - POUNDS
TEST % D.L.L.

L.P.1 L.p.2 LP3 L.P4

Box No. 2 18]
Test 2.4

Static Combined Bend-

ing and Torsion to

failure

0 0 0 0
+663 -850 -49 +324
+1326 -1700 -99 +648
+1989 -2651 -148 +973
+2652 -3402 -198 +1297
+3315 4252 -247 +1621
110 +3646 4577 -272 +1783
120 +3978 5102 -296 +1945
9] 130 +4310 -5527 -321 +2107

g8gsy°

Box No. 3 0 0 0 N.A,

Test 3.1 20 +469 -469
Static Torsion Test 40 +938 -938
60 +1407 -1407
80 +1871 -1871
100 +2345 -2345
80 +1871 -1871
+1407 -1407
40 +938 -938
20 +469 -469

N.A.
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ﬂ) Prior to test 2.4, the failure per [} ) was repaired by bonding and installation of blind fasteners.
E) Failure occurred while increasing the load from 120% D.L.L. to 130%. See data for actual loads.
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Figure 161. Test - Loading Schedule Graphite Thermoplastic YC-14 Elevator Box Test
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fatigue test with maximum Toads up to 67% of D.L.L. was conducted for the
equivalent of 4 1ife times. After each life time of fatigue testing, strain
and deflection data was recorded at static load increments of 257 Jf the
maximum fatigue load. During the fatigue test, the stiffeners bonded to the
lower cover, came loose due to poor bonds. They were replaced with aluminum
angles attached with blind fasteners prior to subjecting the box to a combined
bending and torsion test to failure. Loading increments for the combined test
are noted on Figure 159, Box #1 was loaded to approximately 130% of D.L.L.
when the actuator at L.P. 3 reached the 1imit of its stroke. The box was
unloaded and the actuator repositioned to allow more stroke in the loading
direction. The test was then repeated and the loading was incremented to
approximately 185% of the D.L.L. when the box failed. Post test inspection
revealed that the upper cover failed at Sta. 305 to Sta. 315 and the forward
spar web/chord tee bond failed from the outboard end (approx. Sta. 330) to the
outboard splice (approx. Sta. 265). Upon disassembly, it was noted that the
lower skin stiffener at Sta. 318 was also disbonded. Photos of Box #1
failures are in Figures 162, 163, and 164,

Elevator Box #2 was subjected to a bending test with loading as noted in
Figure 160, followed by a torsicn test outlined on the same page. At
approximately 95% D.L.L. of the torsion loading, the Tower skin/lower front
spar chord bond failed from Sta. 279 to 313. The failure was repaired by
bonding and installation of blind rivets. Following the repair, Box #2 was
subjected to a combined bending and torsion test loading as noted in Figure
160. At approximately 106% of D.L.L., the front spar wep/chord tee bond
failed from the outboard splice at Sta. 265, to the outboard end of the box.
Photos of Box #2 failures are in Figures 165 and 166.

The front spar web/chord failure of Box #2 was repaired by bonding and blind
rivets, as shown in the photograph o1 Figure 167. Following the repair, Box
#2 was subjected to another static combined bending and torsion test to
failure. As noted in Figure 161, failure occurred as the loading was being
increased from 120% to 130% of D.l..L. Box #2 failed along the lower skin/rear
spar chord bond, approximately from Sta. 305 to Sta. 256, and across the lower
cover along the outboard row of fasteners at the outboard cover splice.

Photos of the failed area of Box #2 are in Figures 168 and 169.
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Figure 163. Front Spar Failure- Test 1.9—Elev. Box No. 1
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Figure 164 Front Spar Failure - 19 -Elev Box Ne. 1
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Figure 165. Front Spar Failure - Test 2.3 — Elev. Box No. 2
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LOWER COVER FAILURE

Test 2.4 — Flev. Box No. 2

Figure 168. Lower Cover/Rear Spar Bond Failure —
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Figure 169. Lower Covzr Failure — Test 2.4 — Elev. Box No. 2
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Box #3 was fabricated of graphite with PKXA resin system, to the configuration
of the center portion of the first two elevator boxes. The aluminum end
transition sections were removed from Boxes #1 and #2 and cut down to fit Box
#3. Loading and reaccion point fittings were likewise installed on Box #3.
The test fixtures were relocated to accommodate the shorter length of Box #3,
and only two actuators at L.P. #1 and L.P. #2 were used to apply a torsional
load. Four deflection indicators located as per tne sketch in Figure 170 were
utilized to measure torsional stiffness. Photos of Box #3 in the test
fixtures are in Figures 171 and 172.

The torsional loading schedule for Bex #3 is in Figure 161. The static

torsicnal stiffness was the only test on Box #3, and no attempt was made to
fail the box.
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10.0 COST AND PAYOFF ANALYSIS

Presented in this task are the cost factors associated with the various
manufacturing methods and also the costs associated with the production
fabrication of the YC-14 outboard elevator. Cost factors are presented in
man-hours since the associated dollar factors vary between companies. Also
the production times associated with thermoplastics will also fluctuate
slightly depending upon facilities available since heat-up and cool-down are
important considerations. Unlike thermoset materials, a slow precise heat-up
rate is not required. The part must reach a temperature exceeding its
softening point and the rate at which that point is reached is not
particularly critical.

Table 33 shows the areas of general cost savings with reinforced thermoplastic
composites. These savings apply to most methods of forming or assembly. Less
labor and possibly energy savings results from not requiring a programmed cure
cycle. Because thermoplastics have an infinite shelf life and no critical
storage temperature requirements, savings result from less material scrappage
of overaged material and eliminate the cost associated with contirolled
environmental storage (i.e., freezers). Since the material can be stored

indefinitely, material scrap can be retained for future use cr ground for
molding compounds.

Thermoplastic consolidated sheet stock is rigid and tack-free enabling one man
to easily handle a 4' x 8' sheet of material. This simplifies lay-up since
one man can perform the lay-up of a large part that would require the efforts
of 2-3 persons using a tacky thermoset prepreg system. On this program, this
phenomenon proved to be a big cost saver. The individual GRTP plies are hcld

together at the corners with a solvent solution of dissolved resin until
fusing and forming.

Another big cost saver is the ability to reprocess defective parts. Standard
graphite/epoxy parts have a rejection rate of about 5%. Typical rejections

are delamination, resin poor areas or poorly compacted areas. An analysis of
these defects revealed that the rejection rate could be reduced to 1%
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Table 33. Areas of Cost Savings

o No fixed time, temperature, pressure profile
@ No critical storage requirements

® No critical shelf life

@ Less materiaf cutting waste

o Ease of handling rigid sheet material

® Reprocessing feasible

& No material bleed

@ Greater damage tolerance in fabrication

Result
Less labor
Fewer facility requirements
Less scrappage
Lower material requirements
Less labor
Less part scrappage
Less material required

Lower labor costs
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through the use of GRTP parts due to their ability to be recycled or
reprocessed. This feature was used several times in the course of this
program to correct defective parts. Depending on the part in question and
the stage of processing at which this defect occurs, this reprocessing
feature can be a big cost saver.

Another area of small savings is in the elimination of bleed ply materials.
Savings occur in both material and labor through the elimination of this
material. The processing of GRTP requires no resin bleed under normal
conditions. One layer of vacuum bleeder material is still required however,
in some processing techniques to obtain uniform pressure during forming.

Laminate Consolidation - Table 18 shows the processing times associated with
press, autoclave, and pultrusion. Roll-forming as a method of consolidation
was never satisfactorily demonstrated under this program and therefore no
production times were generated. It is estimated, based on trial runs, that
if equipment could be developed the times would be similar to those

experienced for pultrusion. Processing considerations are discussed in
section 4.1.

Post-Forming Methods - Table 34 shows the labor hours associated with
post-forming GRTP structural elements. Times shown do not i lude labor

associated with tool preparation, bagging or debagging. These operations vary
significantly with part complexity and size.

Element Fabrication - Table 25 shows costs comparisons made between GRTP and
GREP structural element fabrications. These costs studies wera conducted on a
production basis assuming the most cost effective method available for both
epoxy and thermoplastic parts. A1l elements were under 4' x 8' in area and
approximately 8' in length. As is evident the cost savings for small standard
eleinents are signhificant. As the size approaches 32 ftz, however, GRTP fabri-
cation costs begin to significantly increase owing to the drastic increase in
costs for facilities and tocling. This increase is evident in the cost change

in complex shapes when the size changes for 4 ft2 (70% savings) to 32 ft2
(18% savings).
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Table 34. Processing Times for Post-Forming

Total Processing Time (hours)

® Press forming 2.00

e Autodlave Forming 4.00

® Pultrusion 2-6 inch/min

e Vacuum-forming .16-.20

Table 35. Element Cost Savings with Gr/T.P.

Elements

T-Stiffeners
Hat-Stiffeners
L-Channei
Honeycomb Panels
Flat Panels
{Small)
Complex Shapes
{Large)

70%

18%

Operations

Bonding

Drilling

*Ower Gr/E (Labor}
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Adhesive bonding operations show no cost savings since in using the standard
epoxy system, the savings operations and procedures must be followed with GRTP
as with epoxy composites. Savings do result in drilling since GRTP in more
tolerant to hole misalignment and does not splinter or fray like an epoxy
Taminate.

YC-14 GRTP Elevator

The cost predictions made early in the program for the YC-14 elevator proved
to be highly accurate during final hardware fabrication. The toolin costs
however, increased over the early predictions and the revised costs are shown
in Table 36. In fact the resulting tooling costs for the GRTP was 1.7 times

that of the epoxy tooling; however, the GRTP elevator was still more cost
effective by the 10 unit.

Summary - GRTP do show cost savings over graphite/epoxy composites for routine
structural elements. The degree of cost savings is highly dependent upon the
fabrication methods incorporated, avaiiable facilities, component design and
production quantity. A general trend that was evident is that GRTP are not
cost effective over graphite/epoxy parts at production levels under 5 units.
Above 10 units, GRTP, in all trades conducted in this program, proved to be
the more cost effective method of fabrication.

Table 36. YC-14 Advanced Composite Horizontal Stabilizer Cost Estimate

PRODUC- TOTAL
ADVANCED COMPOSITE MATERIAL | NO.OF | Tion — [ MATERIAL | TOOLING | cost
HOURS OOLLARS

GRAPHITE/EPOXY 1 8,563 46 9% 7,742 538,076
10 60.936 469,260 7,742 2,529,550
100 374,666 | 4,692,600 7,742 | 16,164,825
GRAPHITE/POLYSULFONE 1 6,050 40,015 13,147 615,925 8
10 43,062 400,150 13,147 2,086,120

4,001,500 13,147




11.0 PKXA Evaluation, Task XII

Under Navy Contract N00019-76-C-0170 and IRAD, Boeing has evaluated a new
polysulfone resin system from Union Carbide Corporation, designated

PKXA. This resin, when used with graphite fiber reinforcement, exhibits
similar properties to P-1700 polysulfone composites. However, PKXA
contains reactive end-groups on the polymer and during the processing
cycle the resin cross-links into a polymer which exhibits improved
solvent resistance over P-1700. The chemical structure is shown in

Figure 173.

The purpose of Task XIII was to compare the structural integrity of PKXA
graphite reinforced thermoplastic (GRTP) to P-1700 GRTP and consisted of
the following efforts:

{a) A design review to ensure compatibility of PKXA with the
existing P-1700 design,

(b) Element tests,

(c) Fabrication and test of a seven foot section of the YC-14
elevator.

These activities are discussed in this section.

PKXA Element Tests

Static tests were conducted on rail shear, fusion bonded lap joints,
mechanically attached lap joints and fracture panel specimens. Fatigue
tests were also conducted on rail shear specimens to determine properties
of Graphite/PKXA structural elements.
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Figure 173.

(CH30)3Si-< o-@—c-@—o—@—s-@ )-—s:(ocna)a

(Fo-0-+-0-0-0+0-)

PKXA

0

UDEL POLYSULFONE (P-1700)

Chemical Formulas of PKXA and P-1700 Polysulfone

Thickness,
inches

Cross
section
area,

sq. in.

Ultimate
shear
stress, psi
at 70°F

Shear
modulus,
G,

106 psi

0.0620
0.0623
0.0571

0.3131
0.3146
0.2883

22,600
22.000
23,600

3.6
34
3.9

Table 36.

PKXA Static Rail Shear Test Results
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Static rail shear specimens were tested at room tamperature in a 120,000

pound capacity Baldwin universal test machine. Specimens were instrumented

with a single element strain gage criented at 45° to the specimen center line,

to measure shear strain. Strain and load, as measured by the test machine, were
recorded on a Honeywell Model 530, X-Y plotter. The results are shown in Table 36.

PRI

A

Fusion bonded and mechanically fastened lap joint specimens were tested in a
120,000 pound capacity Baldwin universal test machine. Load vs. test machine
crosshead displacement was recorded on the Baldwin X-Y plotter. Tests were
conducted at room temperatu-a and 160°F as noted on the data sheets. Elevated
temperature tests vere conducted in a resistance heated box furnace with a
Thermac power controller. Specimen temperatures were sensed by Chromel-Alumel
thermocouples bonded to the specimen, and indicated by a Doric digital temper-
ature indicator. Results of the mechanically attached and fusion bonded lap
shear specimens are shown in Tables 37 and 38, respectively.

Fracture panel specimens were tested in a 120,000 pound capacity Baldwin
universal test machine at room temperature. Load vs. test machine crosshead
displacement was recorded on the Bladwin X-Y plotter. The results are shown
in Table 39.

Rail shear fatigue tests were conducted in a Sonntag SF-10U universal fatigue
maciine at a minimum/maximum load ratio R = .05. Specimens were loaded at a
frequercy of 30 Hz, at temperatures of 70 and 160°F. Snecim2 s were heated by
Chromalox strip heaters attached to the test fixture and surrounded by fiber-
glass insulation. Heater power was controlled by a Thermac power controller.
Specimen temperature was sensed by Chromel-Alumel thermocoupies bonded to the
specimen gage section and indicated on a Doric digital temperature indicator.
The number of loading cycles to failure for each specimen was recorded. These
data are presented in Table 40. A comparison of these data with P-1700 data
is shown in Figure 174. A general comparison of static PKXA data with static
P-1700 data is shown in Tahle 41.

The fusion bond and mechanical attachment tests showed that the PKXA
graphite composite load transfer capabilities were equivalent to the
F-1700 graphitc composite materials. This indicated that the load
transfer details and fabrication procedures used for the P-1700 did not
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Specimen Ultimate é
axis to load, E
3 layup pounds Type of failure £
0-90° 730 || \L £
E . %
0-96° 658 \[ - 2
- +450 1034 || :
+45° 782 \ 3
E/D = 2, fastener = BAC B30NF-4, width = 1.00
E 4 plies, fabric
% Table 37. PKXA Mechanical Attachment, Lap Shear Test Results
4 Lap Lap Test Ultimate
length, width, temperature, load,
inches inches oF pounds

0.52 1.013 70 1,849

0.52 1.013 70 1,836

0.52 1.013 70 2,068

0.52 1.017 70 2,256

0.52 1.018 180 1,775

0.52 1.018 160 2,400

0.52 1.016 180 1,328

0.52 1.016 160 2,125

4 plies, fabric, 0, 90°

™ “mx* AT ‘Hj‘"ﬂ‘lﬁ‘ G

Table 38. PKXA Fusion Bond, Lap Shear Test Results
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Specimen
axis to
layup

Thickness,

inches

Width,
inches

Ultimate
lozd,
pounds psi

stress,

Gross area

+45°

0-90°

0.058

0.055

5.955

5.995

4,200

6.460

12,100

19,500

4 plies, fabric

100

0 50 dia

Table 39.

PKXA Fracture Panel,

Tension Test Results

Cross Maximum

section | Test fatigue Cycles
Thickness, area, temperature, | stress, to
inches inches |9F

psi [i>

fatlure

0.061
0.059
0.059
0.057
0.058

0.3080
0.2980
0.2980
0.2880
0.2930

70
70
70
160
160

17,500 .

15,000 |

20,000
15,000
17,500

'2,566,600

438,000

33.000
868,000
102,000

[F=>R = Minimum/maximum stress = 0.05
4 plies, T-300 fabric at + 45

Table 40,

7-13

257

PKXA Raii Shear Fatigue Results
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35
0 70°F, no hole P-1700
& 70°F, 5/16-in hois P-1700
30} & 160°F, no hole P-1700
« 70°F, no hiole PKXXA
8 o 160°F, no hols PKXA
25}
STRESS
(1b/in2 x 1079)
20}
1 © e *\ e
0{ A i lAllllL A A lll_l_lll — '} Alljll‘ A 'y A A 4353

103 104 10° 108 107
CYCLES TO FAILURE

Figure 174. PKXA-P-1700 Rail Shear Fatigue Data Comparison

Element PKXA P-1700
Fracture panel (+ 45) 42001 5120
Fracture panel (0, 90) 6,460 1b 8,140 1b
Mechanical fastener tests
Load (E/D=2)
Laminate (0, 90) 730 1b 748 It
Laminate (0, 90) 688 1b 638 1b
Laminate + 45 103416 93716
Laminate + 43 7821b 813ib
Fusion bond
Laminate (0, 90) RT 4,125 psi 3,110 psi |1
Laminate (0, 90) RT 4,512 psi 2,990 psi
Laminate (0, 90) 160° 4,800 psi 2,500 psi
Laminate (0, 90) 160° 4,250 psi 2,540 psi
Static rail shear 22,800 30,900
22,260 31,100
23,800 32,560

(= Based on rail <hear fusion bond specifications

Table 41. PKXA Polysulfone Static Element Test Data Comnarison
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The fracture

require changes to facilitate the use of PKXA material.
strength and fatigue capabilities were generally lower than the P-1700
graphite material but the modulus values are comparable. A1l properties
were more than adequate for the proposed stiffness critical design of the
YC-14 elevator. Data obtained from the (jﬁso) graphite/PKXA center
notched panel shows that its yross fracture strength is below the
equivalent graphite/epoxy and graphite/P-1700 but well above the design
limit strain. Likewise, the PKXA composite is lower than the equivalent
P-1700 in rail shear strength but with fatigue capabilities more than

adequate to meet the design requiremeats.

PKXA - Elevator Box Section Fabrication and Test

During this task a 7' section ¢f the YC~14 elevator box was fabricated
of graphite fabric/PKXA composite construction, The PKXA resin was
received in powder (fluff) form, put into solution using methylene
chloride, an< impregnated ontc graphite fabric (24 x 24) to a nominal

resin content of 35%. The prepreg was oven dried for 1/2 hour at 250°F

to remove residual solvent. Then, the prepreg was consolidatad into

four ply sheet stock in an autoclave at 600°F for thirty minutes using

200 psi pressure.

Once the prepreg and sheet stock had been prepared, detail part
fabrication and elevator assembly tooling/procedures used were the same
as for the full size P-1700 polysulfone elevator boxes. The completed

PKXA box section is shown in test, Figure 171,
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